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Kozlov, Sudostroyeniye, submitted 3 June 1968, 2800 copies]

[Text] Abstract: The results of the most significant theoretical and
experimental studies of a new area of modern ship hydrodynamics,
which is of practical importance and is related to modern methods
cf the theory and calculation of a controlled boundary layer, are
discussed in this monograph. Along with theoretical problenms,
physical models of the investigated phenomena are considered,
experimental data and structural diagrams of various methods of
boundary layer control are analyzed. Results are presented from
studying fluid flow stability in a laminar boundary layer, vari-
ous methods of laminarization (suction, flexible surfaces and
coverings that alter the properties of the fluid), and turbulent
boundary layer control by injecting materials with various proper-
ties into the region next to the wall. Practical recommendations
are made which will permit the possibilities of one control
method or another to be evaluated, and conclusions are drawn re-
garding the expediency of using boundary layer control for vis-
cous drag reduction on ships.

; The book is designed for engineering, scientific workers, post-
graduates and students in the higher courses of the shipbuilding

schools and departments.

There are 492 pages, 205 figures, 10 tables and 391 references.
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PREFACE BY THE AUTHORS

At this time applied hydrodynamics has developed to the point that it is possible not
only to determine the forces acting on a body in motion, but also to alter the direc-
tion of these forces in the direction required in practice. However, whereas there
are a number of monographs on wave drag on a moving body in which methods of deter-
mination and reduction of wave drag are presented, the problems of determining
viscous drag are discussed in only individual journal articles, which for the most
part are unavailable and unknown to shipbuilders at large.

This situation is explained by the novelty of the problem and absence of a clear
idea about the practical possibilities of one method or another of reducing viscous
dras,.

The monograph presented here is intended to fill this gap to some degree. It dis-
cusses boundary layer control methods and calculation procedures permitting estima~
tion of the possibilities of one control method or another. Conclusions are drawn
regarding expediency of boundary layer comtrol to achieve viscous drag reduction.

Boundary layer control can theoretically be implemented by two methods. The first
consists in injecting materials the properties of which differ from the
properties of water at the wall region. The second 1is based on the idea of lamina-
rization of the boundary layer ; with large Reynolds numbers the friction in the

boundary layer under laminar conditions is less than in a turbulent boundary layer.

Both of the indicated methods are investigated in the book. When discussing the
first of them, problems are investigated which are connected with studying a bound-
ary layer both with continuous distribution of the £luid properties across the
boundary layer and in the presence of an interface between fluids (an air or gas
interlayer between the surface over which flow takes place and the main water flow).

The problems of stability of the fluid flow in a laminar boundary layer and various

methods of laminarization of the boundary layer (suction, flexible coverings, altera-

tion of the fluid properties in the wall region) were investigated in the discussion
of the second method. :

Structural diagrams are presented for various methods of boundary layer control.

[Portions of the text are missing]
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. Reynolds number. Therefore the boundary layer characteristics of a model and
full scale unit can differ significantly, which, ir turn, can lead to noticeable
variation of the force interaction of a body with a fluid and complicates the pro-
cess of recalculating the results of model experiments to full scale. Under full
scale conditions the Reynolds numbers are appreciably higher than during model

- experiments. The boundary layer of full-scale units in practice is completely tur-
bulent. On the basis of relative smallness of the Reynolds numbers, in the case of
models the boundary layer can remain laminar at significant distances from the for-
ward end, and, conmsequently, the possibility of laminar separation arises. In

- addition, under laminar flow conditions the frictional drag is appreciably less
than under turbulent conditions. Accordingly, the people conducting experiments
are faced with the problem of turbulization of the boundary layer which is solved
by various types of turbulence stimulators.

The turbulization problem also arises the simulating lifting surfaces if the experi-
ment is performed with small Reynolds numbers.

For illustration of the effect of the nature of the flow in the boundary layer on
the hydrodynamic properties of lifting surfaces let us consider the results of one
of the experiments performed by G. G. Filippchenko and G. V. Anderson. A foil having
NACA-2309 section, with 0.5 meter chord and 1 meter span was moved at a speed of

9.5 m/sec in a stationary air environment. The lift was measured, and the flow
separation on the suction face of the foil was recorded by means of silk threads
glued to it. A photograph of the upper surface of a foil set at an angle of attack
of 18° is presented in Figure 0.1. The behavior of the silk threads indicates sepa-
ration of the boundary layer over the greater part of the surface. The lift (Cy)
was 0.8 in this case. Figure 0.2 shows the behavior of the silk threads in the
presence of a trip wire 1 mm in diameter positioned with respect to the foil in
accordance with the diagram illustrated in Figure 0.3. Judging by the silk threads,
boundary layer separation is in practice absent over the entire foil although the
towing speed and position of the foil with respect to the flow did not change. Im
the investigated case the 1ift was 1.15. Boundary layer separaticn is eliminated by
turbulization exactly as in Prandtl's well-known experiment with flow over a
sphere.

3. The next important area of application of boundary layer control is the class of
problems connected with decreasing drag. Out of the three components of water re-
sistance to the movement of vessels —— wave drag, form drag and frictional drag —

- first form drag began to be dacreased by giving streamlined, smooth lines to bodies
moving in a fluid. 1t is also possible to reduce frictional drag by de-
creasing the wetted surface. In thic case the bodies become relatively short and
the form drag increases sharply as a result of flow separations occurring in the
aft end. Suction or ventilation of the boundary layer in thevicinity of the aft end
is proposed to eliminate the indicated separations.

4, The problems of influencing frictional drag have been the least studied, In
practice, shipbuilding has no fully developed methods of reducing frictional drag.
They are all in various stages of testing and determination of the expediency of
their application.

It is the goal of the authors to outline to some degree the class of basic methods

of lowering fricticnal drag which appear to be theoretically possible. These methods
have been visually represented in diagram 2., The degree to which individual methods

4
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Figure 0.1. Behavior of silk threads on separation of the
boundary layer over the greater part of a foil surface.

Figure 0,2, Behavior of silk threads in the presence of a
longitudinal trip wire,

of lowering frictional drag have been developed differs, The most prospective and
efficient means is ventilation of the wall reglon with gases, This follows from a
comparison of the frictional stresses on the wall in fluids with different physical
constants. Therefore the method of reducing frictional drag by creating thin air
films, which has been checked out under full-scale conditions, is the closest to
practical application. Although suction of the boundary layer to achieve laminari-
zation has shown its best side in aviation, it is premature to recommend this

5
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169)

Figure 0.3, Diagram of trip wire positioned ahead
of a wing.

Key: 1. trip wire

method for practical use in shipbuilding, for there are no corresponding data from

- full-scale experiments.

The method of reducing drag by using flexible surfaces is the farthest from practical
application. This method has been confirmed by a single experiment and theoretical

developments.

Along with the indicated methods the classification presented in diagram 2 encom-
passes methods which have as their "assets" only theoretical developments (laminari-
zation of the boundary layer by creating a positive kinematic viscosity gradient in
the wall region). Finally, methods of lowering the frictional drag are mentioned
there, the idea behind which has still be insufficiently completely confirmed by
theoretical developments and experiments (for example, the effect of an elastic wall

on a turbulent boundary layer).

When studying diagram Z it is necessary to consider the known degree of arbitrari-
ness in dividing laminarization methods into methods that increase the curvature of
the velocity profile and methods directly influencing pulsating motion in the boun-
dary layer. The presented classification was constructed by the principle of con-
sidering the primary mechanism of controlling disturbing motion. Thus, with suction,
for example, not only is the steepness of the velocity profile increased, but the
centers of pulsating motion are eliminated together with the fluid; in the case of
decreasing the kinematic viscosity near the wall, the profile fills out signifi-

cantly, but the pulsating motion damps more slowly.

Not all wethods of reducing drag presented in diagram 2 are analyzed in the book.

Only the most prospective in the sense of use for shipbuilding are touched on.
Primary attention has been given to discussing new results and investigating the
theoretical aspects of applying omne method or another.

The apparatus of stability theory is uged for theoretical evaluation of the possi-
bility of boundary layer laminarization. This approach sometimes encounters objec-

tions in conmnection with the fact that there is a transition region between the

point of loss of stability defined by this theory and the developed turbulent boun-
dary layer zone. This transition region can also change in its extent., Therefore

the following remarks are appropriate.

6
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Hydrodynamic stability theory has been confirmed by many experiments (see Chapter I)
and correctly indicates the basic trend in the occurrence of turbulence. Based on
the conclusions of stability theory, laminarized foil sections were built which un-
der actual conditions demonstrated theoretically predicted better drag character-
istics than ordinary sections (Figure 0.4).

This qualitative agreement between the stability theory conclusions and full-scale
experimentation is also observed in boundary layer laminarization by suction of
fluid from the surface over which flow is taking place.

Thus, the application of hydrodynamic stability theory for qualitative evaluation of
the possibilities of one method of boundary layer laminarization or another appears
to be justified, the more so in that calculations performed with respect to the loss
of stability point always give a "margin" in determining the length of the laminar
section (of course, if all of the significant factors of the phenomenon are taken
into account).
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Figure 0.4. Frictional drag of a section, 1 --— ordiniry section;
2 — laminarized section; 3 =~ friction in the laminar boundary layer
of a plate; 4 —-- friction in the turbulent boundary layer of a plate.

Key: a. pressure distribution

Laminarization of a boundary layer requires elimination of quite powerful disturbing
factors: surface vibration and roughness, extraordinary external turbulence, local

boundary layer separations. The effect of some of the indicated factors on transi-

tion of laminar flow to turbulent is discussed in Chapter V.

Hydrodynamic stability theory studies the behavior of small disturbances in a lami-

nar boundary layer. It is obviously impossible exactly to define the boundary
which separates small disturbances from finite ones at this time. It is necessary

to define the admissible magnitude of the above~enumerated disturbances in esch
specific case on the basis of experimental data.
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It has been pointed out that the most prospective means of reducing the frictional
drag of flat-bottomed transport vessels is ventilation of the wall region of the
flow with low-viscosity and low-density materials, that is, gases.

Accordingly, a theoretical study of a two-phase boundary layer is presented in the
book.

Two boundary layer gas saturation modes are investigated: the film mode in which a
clearly expressed, stable gas-liquid interface is observed, and the diffusion or
bubble mode in which a gas-water mixture moves near the wall, the viscosity and
density of which exceed the viscosity and density of the gas.

From the point of view of decreasing frictional drag the film gas saturation mode
is of the greatest interest.

As a result of complexity of studying a two-phase boundary layer, the phase motion
diagram is given, that is, the gas saturation mode (film or bubble) and the mode of
motion of the liquid and gas (laminar or turbulent) are assumed in advance. This

- approach makes it possible to determine all of the hydrodynamic flow parameters.
The problems of stability of the assumed form of the flow are not considered.

In view of significant difference in physical characteristics of a gas and a liquid
two different methods of theoretical investigation of film gas saturation are pre-
sented in the book.

On the one hand, boundary layer theory is used to study film gas saturation consid-
ering the effect of the gas demsity and viscosity under the condition of neglecting
the influence of the gas ventilation on the pressure distribution which is assumed
to be given. The form of the interface 1is determined by the gas flow rate and
method of injecting it into the flow.

On the other hand, for investigation of artificially created gas films the theory

of developed cavitating flow is used in which real gas properties are not considered.
| Motion with an interface is considered as motion of an ideal fluid defined by the
; cavitation and Froude numbers with a free flow line subject to determination, the
pressure on which is constant and equal to the gas pressure in the film,

Here a study is made of the problem of the limits of applicability of the indicated
theories important in scientific and practical respects.

The efficient use of cavitating gas films to reduce drag is possible only if the
basic physical laws defining the cavitating flow parameters are known.

In the proposed book a quite detailed discussion is presented of the results of
theoretical and experimental studies determining the parameters of artificial gas
films created on the bottom. The most important results of these studies was the
conclusion of the existence of a limiting Froude number with respect to length of
the gas film or, what amounts to the same thing, with given speed of the vessel —-
limiting (maximum possible) length of the gas film. In addition, it is demonstra-
ted that limiting gas films can be obtained for very small (theoretically zero) air
flow rates, and the cavitation drag of the fittings used to form the gas films is
very small.
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The results presented in Chapter VIII can be used for practical solution of problems
connected with the development of drag reduction deV1ces for flat-bottomed
transport vessels and planing vessels.

In the Soviet Union, papers by a number of researchers consider the problems connec-
ted with incompressible boundary layer control.

Hydrodynamic stability problems, which are closely intertwined with boundary layer
laminarization, are being resolved by the Moscow Hydromechanics School under the
direction of academician G. I. Petrov. Boundary layer laminarization by slot suc-
- tion is the subject of papers by K. K. Fedyayevskiy, A. S. Ginevskiy, A. G. Prozorov,
V. N. Nikolayeva, Yu. N. Alekseyev, L. F. Kozlov. Distributed suction from the
boundary layer is represented by studies of Ya. S. khodorkovskiy, S. S. Zolotov,
Yu. N. Alekseyev, A. I. Korotkin, L. F. Kozlov. The influence of other discoveries
on boundary layer laminarization was investigated in papers by A. I. Korotkin, V. B.
Amfilokhiyev and N. A. Sergiyevskiy.

Turbulent boundary layer control is represented by papers by S. S. Kutateladze, A. I.
Leont'yeva, L. Ye. Kalikhman, V. P. Mugalev, Yu. V. Lapin, Z. P, Shul'man, A. M.
Basin, Yu. N. Karpeyev, I. P. Ginzburg.

In addition to the early works by L. G. Loytsyanskiy and K. K. Fedyayevskiy on two-
phase boundary layers, it is necessary to note the studies of G, G. Chernyy, A. N.
Ivanov, A. A. Butuzov, I. D. Zheltukhin, A. M. Basin and V. B. Starobinskiy. The
influence of high-molecular additives on the characteristics of turbulent flows has
been studied in experiments performed by a group of scientists under the direction
of G. I. Barenblatt.

hydrobionics problems have been investigated in papers by researchers directed by
A. N. Patrashev.

A bibliography to which references are made in the text is presented at the end of
each chapter. In some of these papers there are exhaustive lists and surveys of
foreign research of the problems discussed in the book.
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CHAPTER I. LAMINAR BOUNDARY LAYER STABILITY
. § I.1. Some General Problems of the Stability of the Laminar Form of Fluid Motion

During fluid flow two forms of motion can be observed in the boundary layer: lami-
nar and turbulent. The laminar form of motion of the fluid (from the latin word
lamina — plate) is characterized by the fact that its elements move in an orderly
fashion, in layers, not mixing with adjacent layers. The turbulent form of fluid
motion (from the latin word turbulentus —- stormy, disordered) is chavracterized by
disordered, nonsteady displacements of its elements along complex trajectories.

Here the fluid particle velocities are of a random nature and vary with high fre-
quency.

It must be emphasized that the presence of disorderliness in the motion of fluid
particles only in time is insufficient for the motion to be considered turbulent [1].
Actually, .one can conceive of - defined quantity of fluid moving randomly as a
solid body in space.

In exactly the same way, it is insufficient to have disorderliness of motion of
the fluid particles only in space, for it is possible to imagine steady motion of
a fluid with disorderly trajectories in any volume.

As an example, let us consider the flow behind a circular cylinder [2]. For small
Reynolds numbers (Figure I.la) the flow in the wake is of a laminar nature. With an
increase in the flow velocity around the cylinder (Figure I.lb~d) a Karman vortex
sheet forms behind the cylinder which, in spite of a quite complex nonsteady s‘ate
law of development in time and space, cannot be classified as turbulent motion be-

! cause of the absence of disorderliness of the displacements of the fluid elements.
With a further growth of the flow velocity around the cylinder, the motion in the
wake acquires a turbulent nature. An analogous picture of the laminar to turbulent
flow transition is observed between coaxial cylinders [3].

It is possible to obtain a representation of the nature of velocity pulsations in
the laminar, transition and turbulent regions of the boundary layer from investiga-
tion of some oscillograms (Figure I.2a-c) obtained by V, N. Nikolayeva and N. A.
Sergiyevskiy during wind tunnel testing of a model of a wing using a thermoanemo—~
metric device. '

The existence of two fluid flow conditions naturally imposes the problem of the con-

ditions causing transition of one type of flow into the other. In practical appli-
cations usually we are dealing with transition of laminary flow into turbulent, in

11
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Figure I.1. Nature of motion in the wake behind a cylinder for
various Reynolds numbers Re = ud/v (d is the cylinder diameter ).

connection with which the primary attention of hydro and aeromechanics specialists
is directed toward the discovery and study of the stability conditions of laminar
fluid flow, the conditions of sustaining it [4]. However, recently problems have
been discovered in which it was necessary for researchers to deal with transition of
a turbulent flow to laminar [5]-[9]. A discussion is presented below of the prob-
lems connected only with the laminar-turbulent transition. The phenomenon of lami-
nar to turbulent transition is highly complex., Thus, for example, for the case of
fluid flow in a boundary layer the following regions are distinguished in the tran~
sition zone from the laminar boundary layer to a developed turbulent boundary layer
[10]. The beginning of the first region (Figure 1.3) is determined by the point of
loss of stability of the laminar boundary layer with respect to small random dis-
turbances incident in the boundary layer. As the experiments of Schubauer and
Skramstad [11] demonstrated, relatively regular oacillations of the laminar flow can
and do exist in this zone. These oscillations, developing downstream, increase with
respect to amplitude and, acquiring an irregular nature, make the transition to the
next region characterized by the presence of turbulent "gpots" [4]. Increasing in
size, the turbulent spots gradually fill the entire wall space, forming a turbulent
boundary layer. Oscillograms of the recordings of velocity pulsations in the tran-
sition zone obtained by N. A. Sergiyevskiy using a thermoanemometer when testing
plates in a model testing basin are presented in Figure I.4.

At the present time only the conditions of occurrence of the first region, that is,
the conditions of stability of a laminar boundary layer with respect to small dis-

turbances [12] have been sufficiently completely studied as applied to the boundary
layer.

From what has been stated it follows that the state of the art in determining loss of stability
in a boundary layer does not offer the possibility of indicating the beginning of
developed turbulent flow in the layer, for the characteristics of the second

12

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8

- FOR OFFICIAL USE ONLY

b

A

c)

a)

000000000 0 A

Figure I.2. Flow conditions in the boundary layer: a — laminar con-
ditions; b — transition conditions; ¢ ~~ turbulent conditions.
The distance between strokes corresponds to 0.002 second.
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Figure I.3. Transition zome in a boundary layer. 1 — point of loss:
of stability; 2 -- developed disturbances in a laminar boundary
layer; 3 — beginning of the turbulent spot region; 4 —— turbulent
spot region; 5 — beginning of the developed turbulent flow region.

transition region have still been insufficiently completely studied.. However, the
calculation methods of stability theory as applied to a boundary layer permit sub-
stantiated comparison of laminar boundary layers developed under various conditions

13
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Figure I.4. Transition flow conditions in a boundary layer.
Spacing between strokes corregponds to 0,002 second. 1 -— laminar
conditions; 2-6 — transition conditions; 7 — turbulent conditionms.

from the point of view of their tramsition to the turbulent state. On the basis of
the conclusions of stability theory [13]-~[15], laminarized foil sections have been
built which demonstrate better drag characteristics than ordinary sections [16].
Stability theory has also predicted [17], [18] significant possibilities of laminari-
zation of bodies by suction of fluid out of the boundary layer. As an example, in
Figure 1.5 we see the results of determining the transition point by a thermoanemo-
metric device on a perforated foil with and without suction of air across its sur-
face (the experiment was performed by V. . Nikolayeva). By the transition point in
the indicated experiment she meant the point of maximum intensity of the velocity
pulsations recorded by the instrument.

In connection with an investigation of the transition zone it must be noted that the
loss of stability of the initial laminar form of flow in a boundary layer need not
immediately cause turbulization. It can be found that the flow converts to another
laminar form more stable than the initial one [19], [20]. An analogous phenomenon
occurs in the wake behind a cylinder (see Figure I.1l) when a rectilinear laminar
flow makes the transition to an oscillatory flow which, in turn, develops into a
Karman vortex sheet which is a more stable form of laminar motion than the initial
form. The transition of one laminar form of fluid motion into another can be
observed also in experiments with rotating coaxial cylinders [3], [21], when the
laminar flow in the gap between cylinders becomes proper vortex motion (so-called
“Taylor vortices").

14
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Figure I.5. Coordinates of the transition point on a perforated wing

as a function of the degree of suction. Wing dimensions: chord £ =
1 m; span b = 1 m; perforated area § = 1 m“; X5 = xcrll.

25 50
@ afcex (b)

Key: a. X b. Q, %/sec c. m/sec
Among researchers studying the problem of transition in a boundary layer there are
two points of view with regard to its nature, Certain researchers (Taylor [22],
Wieghardt [23]) consider that transition is a consequence of local separations of

the laminar boundary layer occurring under the effect of finite disturbances incident
in the boundary layer. Others (Tollmien [24], Schlichting [4], Lin [12]) explain
transition as a consequence of loss of stability of the laminar boundary layer with
respect to small random disturbances. Experiments performed under the corresponding
conditions [11], [25], [26] and [27] confirm both theories. In reality, obviously
the situation is such that in the presence of quite large disturbances transition
takes place by a scheme close to the Taylor scheme, and for relatively small dis-
turbances, phenomena develop as predicted by Tollmien~Schlichting theory.

At this time the Tollmien-Schlichting stability theory based on the classical method
of small disturbances is considered generally accepted. This theory is Vvery
strictly substantiated and confirmed by many experiments. As will be obvious from
what follows, it gives a picture of the development of small random disturbances in
a laminar boundary layer which is quite close to reality.

| When studying different methods of boundary layer laminarization, which will be dis-
i cussed later, it is necessary to have a method of estimating the degree of stability
of the laminar form of flow under various conditions. The method of small oscilla-
tions, a systematic discussion of which is presented in the following sections, was
selected as this apparatus. Before proceeding with a description of this method,

it is necessary to indicate its place among the existing methods of calculating
stability: the Goertler method and the emergy method. A brief description of the
mentioned methods and their areas of application are considered below.

A discussion of various aspects of the problem of boundary layer control and flow
stability problems in the wall region requires multiple references to the basic
equations of motion of a fluid near boundaries., These equations with the correspond-
ing boundary and initial conditions are presented in § IL.2 in order to facilitate

the subsequent discussion,
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§ I.2. Laminar Boundary Layer Equations, Initial and Boundary Conditions
Equations of Motion of a Fluid in a Boundary Layer

The general equation of motion of a continuous medium [28] [31] has the form:

J(F——w)pdti-jpnds - 0.
T s -
Here © is an arbitrary volume isolated inside a fluid by the surface §;
p is the fluid particle density;
w is the fluid particle acceleration;
n is the direction of the external normal to the surface S;
f is the mass force vector reduced to a unit mass;
;n is the surface force intensity vector.

Let us transform the surface integral entering into the equation of motion into a
volumetric integral. Then we have

J PadS =5 [pycos(n, x)+ 77, cos(n, y) +

-> a"x 0 (7Pz
+ p,cos(n, 2))dS = S( ot ot a )

L 4

The equation of motion assumes the form:

f[(F—w)p + % "”‘ 4+ 2 "”" + ""‘]dr=o.
T

Under the condition of continuity of the investigated functions and their derivatives
the preceding equality exists only in the case where the function under the integral
sign is zero at any time of motion, that is,

. .

r 2 1 ( 9px 0py dpz)=’
F—w+9( t-o t 7o Q;

Denoting the projections of the mass force F on rectangular coordinate axes by F_,

Fy, F 2 the projections of the vectors p ’ 3&, P, by Pyy? pxy’ P %z and 80 on an

the projections of the acceleration w by du/t, dv/dt, dw/dt, we find the equations
of moticn in the following form:

du - Fx - ( OPxx + (JPW + Opu ).

dl ’

(I.1)

dw

i o Fet

L
P
do g o4 1 (9w ‘7Pw ol’zy
= Fy ot (5 +-5-);
L
P

OPsz Py dpa
( ax + dy + ) :
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The continuity equation must be added to these equations

9 9 9
p + (pu) (pa) + 0(9-0) = 0. (1.2)

For an incompressible liquid the expressions for the intensities have the form [28]:
/] i - Tou \

Poe—— P+ 2 g—:'» P:v P,,, aq + Ox );

Pyy=—P + 2}‘ 0y v Pua=Pux (T + “5;).

dv dw
Py = — P+ 2p—02—; Py = Py =p (—5-+—ay-)-

Here p is the internal friction coefficient or the coefficient of viscosity.

(I.3)

For a uniform viscous incompressible liquid the system (1.1)-(1.3) is simplified

du ____|_____1_ .
7‘.___Fx . vAu,

dv 1 ! .
=R YAy

dw 1 dp .
G =Fi— 5 T (1.4)

w_-
wtayta =0

Here v = u/p 1is the kinematic coefficient of viscosity.

During motion of a fluid near curvilinear surfaces in some cases it is expedient to
use curvilinear orthogonal coordinates q., 4, 93- The corresponding projections

! of the velocity vector will be denoted by v,, v 20 V3 In the indicated coordinates
the equations (I.4) are written as follows {28]

Gu  w du v O e du e, Ol
a " S T Ay e T Hy 94 + ThH, 95, T

ey M, Y aH, % oH, L1 o
A ST Gey T g Tl da e e T ow
WHa 04y My 0gy Hill, 9q, v P Hy g

v |0 [ Hy d(wHy) Il a(u.u.)]_

; T LNy IF'I.: ", 99, HH, 9,
i
i 0 [_Hy @) . M, (vl
e e i %, it (.5
. vy I Uy 7_()_;-::._ _I_u_,», du, - U 5N _*_.“:”_"_'_4 all,
it 1y, oq, Hy oy iy, o Hally 0{/3
Lo Oy S oy Sl Lt
i, u, Oa Ty g, TR N Y A TR
_._Ll,__o_[ Iy, oually)y Ny 0l
Hally | oga L 1Ll g, 11,11, dyy
0 [ Hy 0wy My 9wl
o0 [/l.u, g W, T g J} (1.6)
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Qug 4 ta vy Oy Uy Oty vyoy Ol
ot Hy 0qs H, 94, H, 0q. L, g,

poowo Oy B oMy, % My, o 1 1 %
HHy "9q,  "HH, Oqs  TiHy g5 ~ '3~ p Hy 945

v {6 [ Hy o(wH) _ H, a(v,H.)]_

— T, 'a_T HyH; — ogs Ay g
O [_H_ d(wH) _ _H_ vy 7).

Oqi Htm 602 ”’”; dq,—] } ’ (I 0 7)

0 (vilyHs) | 3 (v,H3Hy) 3 (vsH,Hy) ' .

a T ot o =0 (1.8)

In equations (I.5)-(I.8) H, (i =1, 2, 3) are Lamé coefficients, the values of which
"can be obtained using the cxpression for an element of an arc in the adopted curvi-
linear coordinate system.

dS" == H}(dgr)! + H3(dgn)' + Hiudgs)' (1.9)

Figure I.6. Coordinate diagram on a curvilinear
surface.

The above-described systems of equations of motion of a viscous fluid are basic when
studying flow over bodies in cases where the forces of inertia in the flow greatly
exceed the viscosity forces everywhere except the thin wall region where the indi-

- cated categories of forces are comparable with respect to magnitude. The Prandtl
equations describing the motion of a fluid in this region called the boundary layer
with good approximation, can be obtained by different methods [29], [32]-[35].
The derivation of the boundary layer equations for simplest plane-parallel flow
based on the Mises scheme [33], [28], [39] is presented below.

Let us consider a cylindrical body of finite dimenslons with generatrices perpen-

dicular to the plane of the flow, A viscous liquid flows around the cylindrical
body. Let s be the surface of this body. At each point of the surface let us draw

- 18
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the externz). normal and take values of q. = x and q, = y as the coordinates of any
print M, where x is reckoned along the s&rface from the select2d initial point O

and y is reckoned from the surface to the normal on through the point M (Figure 1.6).
We shall consider that in the flow region of interest to us (0 < x < x;5 y > 0) the
values of v,, v.,, p and their derivatives entering into equations (I.%)—(I.S) are
finite values. In addition, let us assume for 0 < x <x, the curvature of the
surface of the body over which flow takes place also never goes to infinity any-
where.

Let us determine the length of the arc element MM' in the adopted coordinate system
(Figure I1.6)

dS? = (MM')? = (MN) - dy?

A

MN;u+m0=u+w%i=(L+%)mj
where r(x) is the radius of curvature of the surface.

Thus,
dS“::(l ;~{})’dx*+-dy?
(1.10)

Comparing (I.9) and (1.10), we find the Lamé coefficients for the selected coordinate
system

Hyw 1k L0 Hy=1. (1.11)

If thewall is concave, then H. = 1 -y/r, HZ = 1. Let us take uy the velocity of

1
the oncoming flow far ahead of the body -- as the unit of measure of the velocities,
let us take L — the surface length of the body or any linear dimension depending on
it -- as the unit of measure of distances. This can be done, because the body, by
stipulation, has finite extent in the direction of the flow.

Using the indicated characteristic values, let us reduce the system of equations
(I.5)-(I.8) to dimensionless form, considering the two-dimensional nature of the
flow and the expression (I.1l)

ou | du du x 1 ap

o e gy ® e — e =2
ot f [T L v dy 1 1 4-xy o | 4 %y Ox t
(] | Fu P y ax du +
+ "RF[(I 1 xy)? ot a7 (1 [-uy)® dxox
® ou e 4 | .d!-v ' 2% Ju J
+ Iy ou (] =y U o) ox 0 Fxy)? ox | (1.12)
v I dv 1 Qv w 2
ot i T xy " v dy [l
:mﬂ+¢+*LJﬂ_W“ y__ 9%
Jy Re L (1 i %) o Jdy* (11 ny)* ox
Y, ()U ,:/.'.____‘)L x: U__. I _()—A—Il_—
o VT o D 0T 0T =g ox
SR
(1 by}t 0c ) (1.13)
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du
a5 ! (l-{—xy)—g:?+xv;0. (1.14)

In equations (I.12)~-(I.14) the zrevious notation was retained for the dimensionless
values u, V, P, X, ¥, % (x)= ~ ig the dimensionless surface curvature, Re =

r (x)
uoL/v is the Reynolds number. Striving to find solutioms to the system (I.12-(I.14)

for very large Re numbers, it would be possible to drop all terms of order (1/Re) 1if
they do not contain higher-order derivatives of the desired functions u and v, for

by lowering the order of the equatioms, at the same time we eliminate the possibil-
ity of satisfying all of the boundary conditions on the surface of the body, in
particular, the physical condition of adherence of the fluid to the wall. The larger
the Reynolds number, the thicker the wall layer where it is necessary to consider the
viscous terms in the equations becomes, for the forces of inertia of the fluid exceed
the viscosity forces more and more, and for Re + « it approaches zero, but does not
disappear.

In order to study the flow in a boundary layer it is expedient to introduce the scale
for the transverse coordinate y such that the dimensions of the region where it is
necessary to consider the influence of viscosity do not decrease to zero for R - .
It is natural that the scale selected in this way must be related to the Reynolds
number. Considering the form of the dependence of the right-hand sides of equations
(1.12), (I.13) on Re, let us set

y=ygRer, | (1.15)

On the basis of the continuity equation (I.14), which must be satisfied for any
finite value of the curvature, including for X = 0, we conclude that the scale of
the transverse velocity in the boundary layer must also be altered

v, = v-Ren, (1.16)

for by the condition of the investigated problem du/dx is a finite value. The
scales for u, x, t, p will remain as before, that is, we shall consider U =ugox <

X, t1=t; pl=p.

Let us substitute new variables in the system (1.12)-(I.14) and, selecting the ex-
ponent in (I.15), (I.16) so that the terms of an inertial nature in equations (1.12),
(1.13) for any finite surface curvature will have the same order as the higher

order terms with respect to the Re number characterizing the influence of the
viscosity, we find n = 1/2.

The discussed system of equations assumes the following form:

duy 1 uy

[

o, 1+ ny;/Rc'” U %, +1u s
. X ., U 1 dp
5 Lo = - oA I
I xyy/Re'/2 " RelP? I+ xyy/Re'/? 0% 1
4 1 ) 0*u, Puy
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" dx  Ouy X Ouy
T RE(1 4 xy/RPP 0% Ox, + Re"2 (I + uy,/Re'®) Oy
_ »2u, v 0%
Re (1 4 xy,/Re'/?)? + Re*2 (1 + xy,/Re' ) 0x; +
+ 2% 60.
Re¥? (1 4 xy,/ReV/2)? 0%, ] \
L ﬂ_ u, dv, i Ov.
Re/Z ol Re'/’(l +xy1/Re"2) W'{” Rel2 U ay
. 0 __ op, 1 d*vy
T R u? == —Re}/2 "L e ~+ _"Re""’(l  wy/ReF)R Eﬁ—
1 Pu A ox Oy
Re'/* oyt Re? (I + g, /Re2) ~ Ox; ox, j_
' + x dv, ny,
- Re(l - xy./Re")) 9y Re:’/2 (1 + %y, /Rem)2
! — —u —— —0“4] :
Re (1 | xy/Re'/)P  0xy ! Re(1 4y /Re'2)? 0x, |

du, oy @
4 (1 + %y /Rel?)=L U: + R:'/z v, =0,

In the obtained equations let us %o to the limit for Re - », dividing both sides of
the second of the equations by Rel/2 ip advance,

Ou, _uy au. ____ Op Puy Y
— + Uy —5— ax + v U = 0%, ay'i) ’
- "i’l .
- on (1.17)
()ll‘ N 001 2= 0 :
0x, 9y,

The errors in equations (I.17) are on the order of

w M
=172 p—1 —-3/2 7
xR , Re—!, Re-% o

If we go to the old variables x, y, t, u, v, p in (I.17), the Prandtl system of equa-
tions is obtained:

D—t} ’{U——— Re 97

o
oy T 0;

()u L Ov
Tox dy

du 0u du 0p 1 du '
i (1.18)
)

describing the fluid motion in the laminar boundary layer on a curvilinear surface
with moderate curvature with the indicated accuracy.

System (I.18) contains three unknowns u, v and p, where on the basis of the second
equation the latter depends only on x. In order to solve the problem of fluid mo-

tion in a boundary layer with the help of two equations (first and third), it is
necessary to give the function p(x) defined in the first approximation from the
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corresponding problem of potential flow of an ideal fluid over the investigated sur-
face.

Boundary and Initial Conditions. Excluding the transverse velocity component in the
boundary layer by using the continuity equation,

¥
_ (g
v =u(x, 0, {) Jw‘w' (1.19)

it is possible to reduce the problem of integration of ths system (I.18) to finding
the function u(x, y, t). Naturally the boundary and the initial conditions in this
case will be set only for the function u(x, y, t) and its derivatives. As follows

from (I.19), the function v(x, 0, t) which also must be given, constitutes an excep-
tion.

The main boundary conditions for the system (I.18) which fully determine the flow
picture are the folloving expressions

w(x, 0, £) = fi(x, t), v(x, 0, 1) = f,(x, ),
ulx, 4, Olyse—U(x, 1). (1.20)

The last of the conditions (I.20) is defined insufficiently clearly, for the boundary
layer region smoothly becomes the external potential flow region. In addition, it
is necessary to remember that the Prandtl equations are valid only near the surface
over which flow takes place. However, the use of this condition does not lead to
any difficulties, for the equations themselves are such that even for finite and
quite small values of y the velocity in the boundary layer in practice becomes equal
to the velocity of the potential flow.

In the case of nonsteady motion in the investigated region it is necessary to give
the function

(s, g, 0)=fo(x, o). (1.21)

For practical solution of the problems of a nonsteady boundary layer, instead of the
condition (I.21), the velocity of the body at the time t = 0 and law of subsequent
variation of this velocity are given. If the initial velocity of the body u, # 0,
then it is necessary to indicate how the body reaches this velocity; otherwise the
problem will be incompletely formulated, for the function f3 in equality (I.21) will
not be defined.

Approximate methods of integrating the system (I.18), for example, the methods based
on using the Karman integral relation, replace the problem of finding one functiomn
u(x, y, t) by the problem of defining several, but simpler functions with respect to
structure. It is natural that to find these functions more boundary and initial
conditions are required. These additional boundary conditions for the case of :
steady-state flow include the Karman=Pohlhausen' condition consisting in the assumption
of validity of the first equation of motion at the wall and also the expressions ob-
tained by differentation of it with respect to the transverse coordinate. At the
outer boundary of the boundary layer the conditions of smoothness of conjugacy of
the velocity profile in the layer with the external flow velocity are used, equating
the derivatives of the function u(x, y) with respect to the coordinate y to zero.
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By methods analogous to those discussed above it is possible to obtain the equations
and state the problem of a three-dimensional laminar boundary layer [35]-[38].

Axisymmetric Boundary Layer. 1In conclusion, let us consider the relation between a
two-dimensional boundary layer and a boundary layer occurring during flow over a
body of revolution. The equations of a steady axisymmetric boundary layer in di-
mensional form are obtained [16], [35] from the general system of equations (I.5)-
(1.8) for a cylindrical coordinate system under ordinary assumptions of boundary
layer theory and under the condition that the radius of transverse curvature of the
surface r.(x) is significantly greater than the thickness of the boundary layer at
the given point

- du ou ap du
b — = —— 1 V3T
U el pox o
D) | {rov) _
—ox 4 o 0.

If we introduce the Stepanov-Mangler transformation [117], [118]

X

~’=§f§(§)tl§: y=ry(x) gy w=u; T;;_r”__l..r_“”_ﬁ- p=p,
0 o .
the preceding system of equations, considering the relation

o @ a

Jd . 0 .
e —dry—=; S—=lh—=
< Vg Ty
assumes the form
: —ou , — Ou I o dn v
U—+uv—==— = V—.’—, _ ——a_.—- s
ox dy pox dy ox y

that is, it will exactly coincide with the system of equations of a plane bouadary
layer. Thus, the problem of the boundary layer in an incompressible fluid on a body
of rotation can always be reduced to the problem of the boundary layer of a flat

: outline with corresponding velocity distribution in the potential external flow.

§ 1.3. Methods of Calculating the Stability of a Laminar Boundary Layer

Equation of Disturbing Motion. When studying the stability of the laminary form of
flow of a real fluid it is necessary to comsider the process which is described by
the nonlinear system of partial differential equations (I.5)~(1.8). If we do not
consider the mass forces, then for flow over a cylindrical body with constant radius
of curvature of the surface and generatrices perpendicular to the flow direction,
the indicated system, analogously to the case investigated in § I,2, is written as
follows:

For a convex surface:

du r du Ju 0& 1

a4 il —— v=
at + r+yu6x+udy T3 +f+yu
e () e ey
FTTT r4y ox ! MAYZEY ox* dy* + 02* 1
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2r7 du 1 ou u .
AT ‘aT_+ r+y dy  (r+F ]
du ) % o w1 op
gttt E iyt Ty s e T

r \2d% L) v 2r ou
() E et Trra T

1 dv v ]

Ly A TR
ow r dw ow dw 1 9
TR U T P +

%Jr(' +%)(g~;+%’:’—)+l=0;

r

For a concave surface

. 9p

S ()y

. dp r \? Fu | 0w %
s [(F) e

r du ,  Ou ou 1 e =— - %

r—y ‘"ox —'-0W+w$-— r—y

xo;:_ 1 Ou 4 ]
& =y oy =9l
r dv v du [
et R A U E A
r \? 0% dv v v U du
() = (1.22)
S N A R
r—y Oy (r—y* )
dw r Jw ow w 1 dp
i i i
r \* dw Fw Ptw 1 dw
() FrFrE=a )
r du du dw v
e twtawE =0

Hereafter we shall consider the system (I.22), for the case of a concave surface is
of special interest from the point of view of studying hydrodynamic stability of the
boundary layer. The proposition of constancy of the radius of curvature of the sur-
face permitting significant simplification of the problem appears to be justified
for a qualitative study of the phenomenon of loss of stability by the boundary layer.
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Stability of a flow described by equations (1.22) and the corresponding boundary
conditions will be determined, as usually accepted, by the behavior of small random
disturbances which can be imposed for any reasons on the jnvestigated flow. If these
random disturbances are damping with time, the given flow conditions will be stable;
if they build with time, then the flow conditions will be unstable. The equations
characterizing the development of the disturbances can be obtained if we consider u,
v, w, P in (I1.22) to consist of values defining the undisturbed motion u, v, w, p,

and the corresponding disturbances Vs vy, Vo p* so that

(I.23)

Substituting (I.23) in (I.22), using the assumption of smallness of the disturbances
which permits us to obtain a linear system of equations with respect to v_, v_, V_,

p* and dropping the bar over the pressure and the velocities of the undisfurbdd mé-

tion, we arrive at the following system of partial differential equations

duy r dux r ou du dux
a trmt ety ey gt
r—y ¥V
| r  op* r\?* d'ux Pux
-~ ) W

duy r dv r duy | duy
a tryua tt Tt Ty t
Ju
e
. r\* duy Puy ¢y (1.24)
() gt :

b2 G L 9wy ]
(r—y?* ox r—y 9y (r—y* J°

dv dv 2uy
— gy E
+v’0: "% +r—y'

_|. vv

du, r Jw r du, du,

.&_._*V’___y.vx_._dx_fT_y,‘__a_x_.'_ U.o_y__}_
Jw v, aw‘ 1 ap*

Yy dy +w Jz U 57 I

) r\E Q| O | P I v 1.
Fv[(v5) S S e ik

r Jue + duy Jv, vy

r—y Ox

dy + a9z r—y

=0,

In system (I.24), u, v, w are considered to he given coordinate functions. For the
case of a boundary layer when the velocities vary significantly more sharply with
respect to the y coordinate than with respect to the x coordinate, it is possible

to set u = u(y); v =w = 0. The variation of the velocity profile along the surface
is taken into account by successive calculation of the stability characteristics for
the velocity profiles in the boundary layer cross sections located at different dis-
tances from the transverse edge of the body. Some arguments indicating admissibility
of the given simplification appear in § I.4.
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The system (I.24) in the given case is written as follows:

du |

T e e =
. 2 A%
—— () e
T ey ]
.
%‘%Z“L'iy“%"' riy"""=—_:>—% \
wo[(FG) wra R | (1.25)
2r Juy I duy vy .
S ek ik o L
—a—,",i+—,—£—y-u%"='“%o«;’;
() S - w ]
G -y =0

The system (I.25) will be used to study the behavior of disturbances inside the

boundary layer, that is, for y/§ < 1, For bodies shaped like a ship, wings and aircraft
in practice the following expression is always valid

Sk (1.26)

Considering (I.26) and the preceding inequality, let us neglect the value of y in
the difference r ~ y. Then we obtain the following system of equations:

oo

oy v » du i b
o T YUy T T T
v, oy d*vx 2 duy | duy vl
vl Gt T T e W
duy duy 2 1 o
o e T u=—
Gy I Dy -+ Fvy + 2 9ve 1 dyy "U] .
L [ oxt U oyt [ r ox  r dy_ w7 (I.27)
Qus ,  Ous I dp Por | P
o M T T [ ot T oy +
Jd%v; I dv,;
o T
Juy _du,, _ dus vy
o e

If r + @ in (I.27), then the ordinary [12] system of equations of disturbing motion
of a viscous fluid is obtained.
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ﬁ‘!i+u_"_"i+ yg_;—-——:)-%-!-wlv,,
au,, +u auy =_J‘);%py:+vAv,.
et ‘3;:: v o

Goertler Instability in a Boundary Layer. The general solutions of systems (I.27)
and (I.28) under boundary conditions corresponding to the case of a boundary layer
are unknown at the present time. Researchers have been forced to consider the de-
fined forms of disturbing motion, selecting their form considering the equations of
motion. Here, being given the form of the velocitiea of the disturbing motion as a
function of three variables (usually x, z, t) the system of partial differential
equations was reduced to a system of ordinary differential equations, the solution
of which has been investigated. The special position of the variable y is connected
with essential dependence of the main flow characteristics on the transverse coordi-
nate. It is possible to indicate two basic forms of disturbing motion. The first
corresponds to giving small harmonic oscillations of the type of traveling waves in
the boundary layer

=, (y)exp(zax—+:bz——taclL S
‘ 5 (y) exp (iax + ibz — iact); ‘
; Uy == Uz(lJ) exp (iax + ibz — iact), (1.29)

p* = p*(y)exp (iax + ibz— iact).

The sign of the imaginary part of the complex variable ¢ in (I.29) permits us to
judge the increase or decrease in disturbances with time. When studying the behavior
of the second type of disturbances, the latter are given in the form of vortices with
axes along the flow

v, ==v (y)cos (az)cPt;

-tv(J)cos(az)eW

U, = "1(.‘/) sin (az)eb!; (1.30)

', pt = B‘ (y)cos (az)ebt. |

% - The sign of the real exponent B8 in (I.30) defines the variation of the disturbances

! in time. Relations (I.29) and (I.30) fn which the variables x and t change places
can serve as a variation of the disturbing motion. In this case the development of
disturbances is investigated not in time, but downstream. If on the basis of the
equations of motion and boundary conditions the disturbances increase with an in-
crease in the x-coordinate, the motion is considered unstable; otherwise it is con-
sidered stable.

For the existence of disturbances of the type of (I.30) in the boundary layer, the
presence of a dynamic situation in which additional centrifugal forces of inertia
and the corresponding transverse pressure gradients arise (the second equation of
the system (I.27)) is necessary. These conditions occur, in particular, for flow
over a concave surface. If the wall is flat or convex, which in the majority of
cases is of the greatest interest, the vortex instability does not arise (see below).
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Then disturbances of the type of (L.29) are considered which theoretically can exist
both on convex and concave surfaces. Therefore they play a very important role in
the theory of hydrodynamic stability of the boundary layer, a consequence of which
is their detailed investigation in the following sectioms.

However, recently Goertler, et al. investigated some important aspects of the appli-
cation of vortex theory which makes a brief discussion of its basic results neces-
sary. When investigating the Goertler method we shall begin with the system of
equations (I.27). Let us exclude pressure from the equations of motion and substi-
tute the expressions for the velocities of the disturbing motion (I.30). Here we
consider that the pressure of the disturbing motion does not depend on the x coordi-
nate. In addition, in equations (I.27) we neglect values on the order of 1/r.
Since the thickness of the boundary layer § is usually selected as the characteris-
tic dimension, the corresponding errors will be on the order of 8/r << 1. The term
(2/r)u-v_ in the second equation of (I.27), constitutes an exception. It cannot be
dropped,xbecause the inertial forces are determined only by it for neutral distur-
bances (B = 0). For the case of neutral disturbances we find the following system
of ordinary differential equations with respect to Gx(u), Gy(y). vz(y):

. o | o~
L UC TR (R T
v g o 2 -~ |
v, —2a’y {4y, = -_Tuvxaa__v_;
-~ |~ . (1.31)
Up = —— Uy

a

Let us take the thickness of the boundary layer § as the characteristic linear di-
mension and the velocity at the boundary of the boundary layer U, as the character-
istic velocity. Then it is possible to write (I.31) in dimensionless form, using
the notation

a = ad; Rey = E:‘ﬁ ,
and for convenience, omitting the circumflexes
0: - a?vx == Reo“'Uy;
v} —2d%, + aty, = —2 —?— uv,a’ Rey;

1 .
Vy = =— —0U,.
2 a ¥

(1.32)

The boundary conditions for the system (I,32) are determined from the assumption of
equality of the disturbing motion velocity components on the wall to zero

v, (0) = 1, (0) = 1,(0) == 0. (1.33)

In addition, the requirement of disappearance of the disturbing motion for y + « is
imposed.

The system (I.32) with boundary conditions (I.33) was first obtained and investigated
by Goertler[40], [41]. Later the following authors studied the solution of the )
investigated problem: Meksyn [42], Haemmerlin [43], [46], Prima [44], and Smith [45].
The last two researchers used the Galerkin method for approximate integration of the
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system (I.32). A detailed discussion of the method and corresponding bibliography
can be found in the monograph by Mikhlin [47]. Various problems of the application
of the Galerkin method to the problems of hydrodynamic stability are contained in
references [48]-[53], {81].

For explanation of the further course of the investigation of boundary layer stabil-
ity in the presence of vortex disturbances, let us consider the solution of the
problem (I.32)-(I.33) by the Galerkin method. The studies by Goertler [40], [41]
demonstrated that the stability characteristics of a laminar bounary layer with
respect to the investigated disturbances depend very slightly on the form of the
velocity profile. Therefore, according to Prima, we consider

U=y 0<y<ty T
b (y=1).

Proceeding according to the general acheme of the Galerkin method [47], let us select
the following system of coordinate functions :

fe(p) = e=vp(k=1,2...),

satisfying the boundary conditions of the problem, Limiting ourselves to the first
terms of the series, we find the solution of the sgystem (I.32) in the following form:

Vg =¥ (Ay+...)
} (1.34)

Uy =e¥(By + .. .)

Let us transfer all the terms of the first two equations (I.32) to the left-hand
side and denote them by Ll(v » V), L (v, v.)., The constant coefficients A, B in
(I.34) will be selected from’ the’condftidns:

1

[ Li (v w) Fi(9)dy = 0;

0

]
‘ Ly (bxy, vy)) fi(y) dy = 0. (1.35)
0 . .

Let us expand the relations (I.,35):

1 )
J14(y —2)— a?Ay — Rey Byjye—v dy = 0
0
1

[[B02—8y+ ) —2aB@—ay + 1)+ |
J .

+¢wﬁ'm%$R%Mﬂyer=0
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T e

! ! \
‘ \“ AN 2 e -f."\ ~ BRey\ re=3 dp = 0
) A ‘. . -
Y ‘- 1 .
A2 -5 Rey L ader ity 4 B ‘ll =% -ah) Ve rdy = )
) I o v
! ! '
+ 8(a®— l)) Yedy 4 (12— 4a'3)f ye— dy] = (0.
d d

Let us calculate the integrals sucessively:
1 1 } A 4
Vpe—vdy = — o g | o etdy = 0.148499:

o [l
]

|~

.
i\

1

IR AN

1.
Vyesodu o= i
. - I'.

[i} v
) P
\ ‘U.ll' ""l’_ﬂ ) ‘l‘_'".‘lc-'.‘y | 4 _"2_ ‘ !/."l'—"“"
o - 0 L

The preceding system of equations assumes the form:

2 aRey0,1074 -+ (1,181 — 0,051a* + 0,536a%) B = 0.

(0,215 + 0,081a?) A + Re, 0,0548 = 0; .
} (I.36)

In order that the system of equations (I.36) have nonzero solutions with respect to

the constants A, B, satisfaction of the following equality is necessary and suffi-
cient

0,215 + 0,081? 0,054 Re,

2-a*Rey0,107 1,181 —0,051a? + 0,536 | = (.37

Thus, for neutral Goertler disturbances, the Reynolds number and parameter o charac-
terizing the periodicity of the disturbances in the direction of the z-axis are re-
lated by the expression (I.37) which can be rewritten as follows:

B Re . ©:215+0081a%) (1.181 — 005107 4 0.536a)
r 0,005847 :

(I.38)

The right-hand side of (I.38) is positive for all real values of a. Consequently,
for a flat wall where the left-hand side of (I.38) is equal to zero or for a convex
wall where it is less than zero, equality (I.38), which means also (1.37), will not be
satisfied, that is, in the investigated approximation the vortex disturbances do
not exist. For a concave wall it is possible to use (I.38) to construct a neutral
curve in the plane [(S/r):Re§, @] separating the region of stability from the region
of instability. By the region of stability here we mean the set of [one word flle-
gible] parameters o and (6/r)-Re§ for which the vortex disturbances damp. Usually
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it is accepted to construct the curve of neutral disturbances on the axes [a**,
Re** y8**/r]. The values of a** [passage illegible] in the series (I.34) of two
terms, Smith performed the calculations by the Galerkin method on the basis of six-
term polynomials. Thus, by comparing curves I, II and III in Figure I.7 it is
possible to establish convergence of the Galerkin method in the sense of determinisg
B the neutral stability curve to the exact Haemmerlin solution (curve IV). Strict
proof of the convergence of this method as applied to problem (I.32)-(I.33) obviously
is unavailable at the present time.

[
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Figure I.7. Neutral stability curves for vortex disturbances. I —

calculation by formula (I.38); II — Prima calculation; III — Smith

calculation; IV — Haemmerlin calculation; V —— Goertler calculation;
VI -- Maksyn calculation.

The regions of stability in Figure I.7 are below the corresponding neutral curves,
and the regions of instability, above.
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3
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Figure I.8. Possible cases of the occurrence of Goertler vortexes.
1 — flow near a concave wall; 2 — f£low in the vicinity of the
critical point; 3 —— flow with wave current lines,

The instability of laminar flows with respect to vortex disturbances can be observed
not necessarily only near concave surfaces (Figure 1.8). The studies by Goertler
[54] and Haemmerlin [55] detected an analogous picture of loss of stability for a
flow in the vicinity of the critical point. Significantly before the indicated
theoretical solutions, the fact of loss of stability of a flow near the frontal
point of a cylinder over which flow was taking place was established experimentally
by Piercy and Richardson [56], [57]. The noted fact of loss of stability of the
laminar form of flow in the vicinityof the critical point can have practical sig-
nificance, for the arbitray vortices formed in the flow can play the role of exter-
nal disturbances (turbulence of the external flow) the inteasity of which essentially
determines the critical Reynolds number (see Chapter V). Accordingly, it is neces-
sary to recommend that the forward end of bodies with controlled boundary layer
(control for purposes of laminarization) be made with as little fullness as possible
so that the region of undesirable distortion of the current lines will be least.

The vortices with longitudinal axes can also arise in the boundary layer developed
on a plane or convex surface as a result of the appearance of the appearance of

wave disturbances of the type of (I.29). The studies of Goertler and Witting [58]
demonstrated that if the oscillation amplitude of the fluid particles in the bound-
ary layer reaches a value on the order of 1'10"46*, conditions are created for the
occurrence of a "secondary instability" connected with vortices of the type of
(1.30). The importance of the indicated result in connection with the creation of
the general theory of transition is obvious [59], [60]. In additiom, it is possible
to expect that for unavoidable vibration of the skin of real bodies moving in the
water, the Goertler instability will have defined significance.

A list of basic papers studying vortex instability can be found in the surveys by
Goertler [61], [62], [63].

Energy Method of Investigating Instability. In additionto the above-discussed method
of small disturbances based on studying the behavior of a defined form of velocity
fluctuations in the boundary layer with the help of linearized equations cf rotion,
there is the so—called energy method of investigating the stability of the laminar
form of flow [64], [66]. Its essence consists in the fact that the behavior of the
kinetic energy of the disturbing motion in time is investigated. If the kinetic
energy at any selected point in time is increasing, the motion is considered un-
stable; if it is decreasing, the laminar flow conditions are defined as stable.

The sign of the derivative of the kinetic energy of the disturbance with respect to
time is investigated using the relation obtained from the equations of disturbed
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motion [32], [29]. It is natural that it is imposaible to define all the values of
- Ve vy, p entering into one equation (the two~dimensional case) by using only one

equation and the corresponding boundary under initial conditions. Therefore it is
necessary to give the form of the disturbances. For the case of elliptic vortices
proposed by Lorentz [64], detailed calculations appear in the monograph [29].

Let us discuss some of the assumptions used as the basis for deriving the enmergy
balance equation of disturbing motion

—ff,'—g%p(vh-uz)dxdy:@g (= vav,) ¥

ou dv dur \* 4 '
3 Wd" dy— 4p jsj (a—x" —% ) dx dy. (1.39)
)

In equality (I.39) the basic motion is characterized by the presence of only veloc=
ity along the x-~axis u = u(y); the velocity along the y-axis is absent (v = 0).

The derivative of the kinetic energy of a fluid with respect to time entering into
(1.39) is calculated as follows:

LT T or

ar = o P (1.40)

that is, it is assumed that the fluid particles are transported only with the ve-
locity of the main flow. This proposition appears to be sufficiently strong, for
near the wall the velocity of the main flow in the boundary layer can be commensu-
rate with the velocities of the disturbances. Writing the derivative in the form of
(I.40) is actually equivalent to the condition of smallness of the disaturbances.

Let us obtain the energy balance equation analogous to (I1.39) using arguments free
of the indicated assumption. Let us begin with the equation of motion of a viscous
fluid written in vector form in the absence of mass forces
—=—% grad p-}—;ﬁ/.

div V=0
Scalar-multiplying the first equation of system (I.41) by V, we obtain the expression
characterizing the variation of the kinetic energy of a fluid particle of unit mass

(1.41)

|z

Vgrad P+ WAV (1.42)

o

4
f 0

s

if

-

V=I/o+;. P = pot P1

where 60, p0 are the velocity and pressure of the basic flow;

<>
v, p; are the velocity and pressure of the disturbing motion of the fluid,

then the following equality obtained from (I.42) is valid:
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(Vo 1 940D L (7, + D) grad(po+ p0) +

Vot AW, +0). (1.43)

Equation (I.43) defines the variation of thg kinetic energy of a fluid particle in
disturbed motion. Since the basic motion (V., p.) satisfies (I.42), using (T.43)
we find the expression demonstrating how theold.ngtic energy of a particle varies as
a result of the presence of disturbing motion

— — -
2od * dVv » dv (Y
Vo Gt to g =— 5 Vegradp—

- Lo grad(po+ 1) + ¥(Vao |- vAVq } 0do). (1.44)

We shall consider that in the boundary layer grad Py ™ 0. Then for the two-dimen-
sional case of motion from (I.44) we find

x Jux
w2 b o)+ uGE] +

’ ) Ii] 0
Fo (S bt G rEt o) ] +otelgy +

+o v”)%ﬂ T [(“ to) gt Uu)%%] +

.
rl( £ y)
2 1 s 4 9P ) )
e it 2l Ch s tog)t

-1 v(ulv, - vAy, + vAu |- v,Av + v Av, v Av). (1.45)

The total derivative with respect to time in (I.45) is calculated according to the
formula

d _ 9 a a .
=at (u o)z (0 "")79]7'

In the case of neutral disturbances, which is of the greatest interest, the process
of variation of the velocity field is of a perfodic nature, Therefore after averag-
ing for the period, the terms of equation (I.45) which are linear with respect to
velocities and pressures of the disturbing motion decrezse, which allows consid-
eration of' the following simplified expression '

(24)

\ — ()Vx _ 00,( aUy
— = [uv, b 4 uv,—;y— -+ vv,7x—+

Juy. 2 4 du du 2 Ju
| 00”7:7” t Ux—l;‘;:— -1 sty 5~ + vy + Uy —57'] -

- —:—)— (v, %’% -+ v,%py—‘) + v (v,Av, + vAv). (1.46)
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Let us transform the series of terms entering into the right-hand side of (I.46)
considering the continuity equation:

dee v\ | [OWawd | AWy .

(v, g, ) [0 2GR, (1.47)
duy A d(navy) | oy T,

(o 1) o SR T J (1.48)
dp dp, _ O(uem) . Ol |
v ()xl + UVT)!—IL - dx 1 d (£.49)

! duyt 2
- Wl 0 0L\ o 0ok vk _pduy , pou)_o(0ub  fuc ) 4g2(1.50)
v Ar, | oo, :--é(vy :)i — U, 05)4 2(-5\0,'—'0-;' £ X g E()_{/) 2( dx dy )

where
L ovv_i’ﬁ)
b~ (5 -5 )

Let us integrate both sides of equality (I.46) with respect to the so—called '‘vasic
rectangular S." Its boundaries are selected from the following arguments. The
boundaries are selected by the variable y so that for y = Y2 Y = Yy the velocities
of the disturbing motion will be absent. The boundaries aré selecté&d by the variable
x in such a way that the velocity field of the disturbing motion for x = x, and x =
X, will be entirely identical. With this type of integration, the terms = (I.47)-

(1.49) give zero, and from the term (I.50) only the integral of the square of the
vortex remains. Actually,

SIS P
Xy Yy

Vs

dx == 0,

Vs *a e
= J (vev,) | dy - J.(v,,v,)
'S Ay

Xy L1

Integration of the remaining terms is carried out analogously. As a result, we ob-
tain the following equality:

» 2, 2 N N
d Vet by ) 2du |
77” — - drdy - —55 [vige 4 vty
_ () (S)

x (%‘yi 4%) —l—ui%;—]dxdy——flv.ﬁgzdxdy. (1.51)
, () )

Removal of the differentiation sign with respect to time outside the integral is
_ possible, for the integration limits are constants, and the function under the inte-
gral sign depends continuously on time together with its derivatives [65].

Denoting At = tl - to

2

- H' u::; v;’ dxdy =T,

$h

let us perform the time averaging of both parts of equality (I,51) for the interval

At=t1—t0
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o[ ()
+ v},%’;’l—] dxdy—4v ” t2dx dy. (1.52)

(S
Averaging under the integral sign in the invest at_e_g case is possible [65] for the

above-indicated reasons. If we consider that ;x Vo then

-2 0u , —2dv =afdu v _ )
v,\'g;‘*'uywﬁ’vx(ﬁ“'a)‘—o'

a corollary of which is the following equation obtained from (I.52):

Ty —T’“=—(L!1E(g—;+%:‘) drdy—4v [ e deay. (1.53)

At
(S)

Equality (I.53) can also be obtained, assuming that u = u(y), and v = v(x). Absence
of dependence of the transverse velocity component in the boundary layer on y occurs,
for example, in the case of an asymptotic laminar boundary layer with suction.

-]
- ]
1
/
/

| 7/
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Ug

0; O N o L A/ AV o S/ 7

Figure I.9. Diagram of the occurrence of Reynolds
stresses.

Investigation of expression (I,53) is useful for understanding the phyeical nature
of the processes occurring in a laminar boundary layer on appearance of random dis-
turbances in it. Actually, let us first consider the second term in the right-hand
side. It is always positive and enters with the sign of the minimm, i.e., it promotes a
decrease in the kinetic energy of the disturbing motion by converting it to heat.
This process is naturally determined by the fluid viacosity. The first term of the
right-hand side of the indicated equality characterizes the work of the so-called
"Reynolds stress" -pv_v_, which can transfer the energy from the basic motion to
disturbances. In ordef that the kinetic energy of the disturbance increase, it is
necessary in the simplest case where 9v/dx = 0 that the signs of the Reynolds stress
(—pvxvy) and the velocity gradient of the basic flow du/dy compare. Let us explain

this fact by the following schematic argument (Figure I.9). Let us assume that at
the initial point in time there is no disturbance in the velocity profile of the
laminar boundary layer. Then, at the next point in time for some reason the nature
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of which is not significant in the given argument, a longitudinal velocity distur-
bance v_ appears in the fluid layer I, Let the coordinate of the point of appear—
ance of ‘the disturbance reckoned along the wall be x,. Since for x < xq there is
no disturbance, it is always possible to select the point x, 8o that (%g) > 0.

X=Xq

This possibility is determined by continuous dependence of the velocity field in the
fluid on the spatial coordinates, However, as soon as the derivative 9vi /3_ > 0
appears at a point of the layer I with the coordinate x., in accordance with the
continuity equation the derivative avy/ay < 0 appears ag the same point, that is,

fluid flow arises with velocity (-vy) from layer II to layer I. For positive velo—
city gradient of the basic flow du 73y > 0, the fluid particles moving from layer
11 will have velocity in the direction of the main current greater than the fluid
particle in the layer I, that is, they will promote an increase in the occurring
disturbance v_ at the point of the layer I with the coordinate xj. Here an in-
crease in theXdisturbance will take place as a result of the kinegig_gpergy of the
main flow. It is obvious that the sign of the Reynolds stress (-pv_v_) will be
positive in the investigated case. Xy

In Figure I.9, the velocities of the disturbing flow are illustrated for clarity in
the right-hand side of the basic flow velocity diagram. In conclusion of the pre-
sented argument it is necessary again to consider the important role which is played
by the property of continuity of the medium in the process of development of the
disturbances expressed by the continuity equation,

If the equation (I.53) is written in dimensionless form, taking, for example, the
thickness of the boundary layer § as the characteristic thickness and the velocity
at the boundary of the boundary layer u; as the characteristic velocity, then equat-
ing the right-hand side of (I.53) to zego, it is possible to determine the critical
Reynolds number defining the existence of neutral disturbances, the kinetic eunergy
of which does not vary in the time interval At

” Ea dx dy

(S)

RCG =

An actual calculation of the critical Reynolds number by formula (I.54) can be made
for the known velocities of the disturbing motion, Functions defining the values
of Ve vy must satisfy the equations of motion and continuity equation, For each

form of disturbance, generally speaking, there will be a critical Reynolds number.
The least critical Reynolds number out of the corresponding set for all-possible

disturbances will define the boundary below which laminar motion will always exist,
that is, all of the random disturbances entering the boundary layer will be damped.

Thus, one equation (I.54) is inadequate for determining the minimum critical Reynolds
number for the boundary layer. It is also necessary to integrate the equations of
motion for disturbances. If we consider any disturbances, not relating them to

the equations of motion of a fluid, low Reynolds numbers are naturally obtained,
“for the region of possible disturbances increases sharply [12], [29].
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Usually when investigating the work of the Reynolds stresses in the boundary layer,
abgence of a basic flow velocity normal to the surface v = O is assumed. For a
boundary layer developed on an impermeable surface, this assumption is sufficiently
substantiated. In the case of fluid suction across the surface, it is necessary to
have a cautious attitude toward the indicated assumption. For example, for slot
suction there are sections on the surface of the body where sharp variation of the
basic flow velocity takes place in the direction of the y-axis., In these areas lo-
cated in direct proximity to the slots, it is impossible obviously to neglect the
derivative dv/3x in the formula for the Reynolds stress

— [ Ou dv

pos, (55 + ) (1.55)
for, in spite of the small value of v, its variation near the wall takes place very
rapidly. Formula (I.55) shows that the initial section of the slot has a favorable
influence on the laminar boundary layer stability, for the turbulent Reynolds stress
transferring the energy to the disturbance at the leading edge of the slot decreases
as a result of the presence of 3v/9x < 0. The trailing edge of the slot, conversely,
has a negative influence on stability, for the presence of 9v/3x > 0 increases the
total Reynolds stress. The nature of the stress -pv.v_ . dv/dx is exactly the same
as -pvxvy-aulay. The practical conclusion which canxbg drawn when investigating

formula (I.55) is that from the point of view of increasing stability, the slot must
be designed so that the normal suction velocity gradient in the direction of the x-
axis on the trailing edge will be the least possible, and on the forward edge, the
highest.

Of course, when selecting the form of the slot it is necessary also to consider the
important requirement of least drag of the slot for the given fluid flow rate. 1In
view of the necessity for solving the equations of disturbed motion to obtain a re-
liable value of the critical Reynolds number, in contrast to the small oscillation
method, the energy method has not found significant practical development. Its basic
value consists in the explanation of the physical aspects of the development and
damping of disturbances in a boundary layer.

Surveys of research in laminar boundary layer stability can be found in references
[4], [12], [67]-[73], [111], [112],

§ I.4. Small Oscillations Method. Orr-Sommerfeld Equation

In the linear statement of the problem, the velocity components of the disturbing
motion must satisfy system (I.28). The basis for investigating small disturbances
is the fact that it is always possible to assume conditions of development of the
laminar form of flow such that the external random disturbances will not exceed a
given value. The practical possibility of insuring such conditions is confirmed by
experimental research (§ I.10) demonstrating very complete coincidence of the ob-
served processes of development of disturbances in a laminar boundary layer with
linear theory.

The problems of the behavior of finite disturbances in laminar flows are discussed
in references [100]-[110]. However, the difficulties of studying a nonlinear system
of partial differential equations describing the behavior of finite disturbances

do not permit creation of a final theory of their development which, of course,
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prevents understanding of the processes occurring between the loss of stability
point and region of developed turbulent motiomn,

When deriving equations (I1.28) it was assumed that the basic current satisfies the
relations

u=u(y) v-—-'w———:O.J (1.56)

Condition (I.56) is strictly satisfied only for the Poiseuille flow which follows
from the Navier-Stokes equations [29]. It is not valid for flow in the boundary

- layer. When studying laminar boundary layer stability, Pretsch [14] made an effort
to consider the variation of u along the wall and also the presence of the velocity
component v in the boundary layer. On the basis of the approximate nature of the
methods of sclving the problem of laminar flow stability in a boundary layer (see
the following items) it turned out that the refinements of Pretsch are meaningless,
for the corrections that he introduced are beyond the limits of the approximation in
which the problem is solved.

The next simplifying assumption is two-dimensionality of the investigated disturb-
ances. Here we base our arguments on the proof of Squire [74], [12], who demon-
strated that two-dimensional disturbances of the traveling wave type are more dan-
gerous in the sense of the occurrence of instability than three-dimensional ones.
This problem was the subject of a paper by I. Tszya-Chun' [75]. It is possible to
find interesting experimental confirmation of the discussed proposition in the paper
by Schultz-Grunow [76]. Two-dimensional transverse oscillations corresponding to
B the points 1, 2, 3 in the vicinity of the neutral stability curve (Figure 1.10) were
also imposed on a two-dimensional laminar flow using an dscillating” wing. The
curve in Figure I.10 was constructed by the data of Tollmien [77]. ~Point 1 corres-
ponds to the damping disturbances, and point 2 corresponds to mutual disturbances;
point 3 corresponds to building disturbances. In addition to transverse disturbances
longitudinal disturbances were created in the flow using individual roughness ele~-
ments. Here it turned out that the presence of additional longitudinal disturbances
was not felt at all at the beginning of loss of stability of the basic laminar flow
(Figures I.11-I.13). In Figure 1.1l it is obvious that longitudinal disturbances
at point 1 damp, at point 2 (Figure I.12) they are of a steady nature, and at point
3 (Figure I.13) they build, that is, transverse planar disturbances for which the
neutral curve is constructed (the method of construction is discussed in § I.7) are
actually the most dangerous.

For two-dimensional disturbances system (I1.28) is reuritten as

va du ou 1 I \
bl Sa— LW
d_u! -} u@g _ op* A (1.57)
a ax T{'E‘FVAUW
Ouve , duy _
Ox + d—y' = 0.
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Figure I.10. Results of the Schultz-Grunow experiments.
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Figure I.1l. Damping disturbance pattern. The axis »f
the oscillating wing was located along line a-a.

Using the coefficients of the linear system (L.57) as a function of only the y-
coordinate, its solution is found in the form —

v, = v (y)expli(ax—bo));

v, = y,(y)exp [i (ax — bl)). (1.58)

The transition to a complex plane is convenient in the respect that being given
complex values of the parameters a and b it is possible to obtain both oscillating
and exponential solutions to system (I.57) with respect to the variables x and t,
As the boundary conditions for equations (I.57) with respect to the variable x, the
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Figure I,12. Neutral disturbance pattern,

proposition of limited nature of the solution when x approaches both +* and - is
introduced [12], [78]. This leads to the conclusion that in expression (I.58) the
parameter_a must be a real value defining the wave length of the investigated dis-
turbance A = 2n/a. The parameter b can be complex. Its real part defines the propa-
. gation rate of the disturbance wave in the direction of reckoning the x-coordinate,
’ and the imaginary part permits determination of the growth or damping of the distur-
‘ bances with time. It is natural that only the real part of formulas (I.58) have
physical meaning.

e ==
Q \————:

Figure I1.13. Building disturbance pattern,

In the indicated formulation the problem has no initial conditions with respect to
the variable t or boundary conditions with respect to the x-coordinate., It is
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possible to find a formulation of the problem of hydrodynamic stability as a prob-
lem with initial data in references [78], [80], [116].

Excluding pressure from the first two equations of (I.57) and, on the basis of the
continuity equation, introducing the current function

¢ = 9(y)exp |i (ax— b1)),

It is possible to obtain an ordimary fourth-order differential equation with respect
to the amplitude of the current function o(y)

(um ) (F = )= = —2 (3 — 2 1 aB).

d
which hereafter will be used in dimensionless form

u—c)(g —a’p) —u'p = — — (9" — 2% +a'
(u—c) (9 —a'e) —u'gp=— = (9" — 29" + a'y). (1.59)

The velocity at the boundary of the boundary layer is taken as the characteristic
velocity, and the thickness of the boundary layer, as the characteristic length.

The differential expression (I.59) is called [4], [12] the Orr-Sommerfeld equation
{78]. It is the basis for studying the stability of laminar flows of the boundary
layer type.

§ 1.5. Boundary Conditions for the Orr-Sommerfeld Equation

Vhen investigating stability of the laminar form of flow near a rigid surface it is
natural to consider that adhesion conditions are observed on the wall, that is, for
y = 0 both normal and tangential disturbance velocities are absent. Hence, two
conditions on a rigid surface are found for the amplitude of the disturbing-motion
current function :

¢(0)=0; (1.60)
9 (0)= 0. (1.61)

Studying the stability of a laminar boundary layer, usually the concept of a bound-
ary layer of finite thickness is used, considering that the effect of the fluid vis-
cosity is felt only in the wall region bounded by dimensionless coordinate y = 1.
Outside this region the influence of this viscosity both on the basic flow and on
the development of the disturbances is neglected. In an ideal fluid, equation (I.59)
is transformed to the simple form

o alp -0,
¢ --a’e =0, (1.62)

for outside the boundary layer u'(y) = 0. It is easy to write the general solution
B of equation (I.62)
42
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oy) = Cie™ + C;;“”.

The parameter a characterizing the wavelength of a disturbing motion greater than
zero, ¢(y) must be limited for y + « on the basis of absence of disturbances far
from the wall; therefore c, = 0. Imposing the requirement of continuity of transi-
tion to the solution for an ideal fluid at the boundary of the boundary layer with
accuracy to the first derivative on the desired solution of equation (I.59), we
arrive at the equalities

() =™ @ ()= —ce™,

on the basis of which [4], [12], the third uniform boundary condition is written for
equation (I.59)

ap()+¢ (D=0 (1.63)

A corollary of the limited nature of the solution for y + » is the fourth boundary
condition

e, <M< oo. (1.64)
§ 1.6. Construction of Solutions of the Orr-Sommerfeld Equation

In the general case of giving the function u(y) it is impossible to indicate exact
solution of equation (I.59) under the boundary conditions (I.60), (L.61), (1.63),
(1.64). Therefore various approximate methods of constructing partial solutions of
the investigated equation are used. In (1.59) the coefficients are regular functions
of the variable y in the interval 0 <y < 1, that is, in the vicinity of any point
Yo from the indicated interval they can be expanded in converging seriea of the type

3 . T
E‘oax(y—yn)» if ly—y0|<pmv

where the values of p_ > 0 (the symbol m determines to which coefficient ' the
given convergence radtus pertains). Consequently [82], in this interval it is
possible to find the solution of equation (I.59) in the form of a series with re-
spect to powers of an independent variable. If series for four independent solu-
tions of equation (I.59) can be constructed such that they will converge uniformly
in the region of definition of y, the existence of the fundamental system of solu-
tions of equation (I.59) will be proved at the same time. In view of the fact that
the coefficients in (I.59) are also regular functions of certain parameters (o, c,
1/0Re), using smallness of some of them (c, 1/oRe) it is possible to comstruct solu-
tions in the form of series with respect to powers of these parameters. Heisenberg
[83] and Lin [67], who investigated the given method in detail proceeded in this
fashion in their research.

Considering that the boundary layer stability is lost for large Re numbers, it is
possible to find the solution of equation (I.59) in the form of the series
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o) = 90 + gz 0 () + (ke ) @)+ - - (1.65)

The parameter 1/oRe is assumed to be a very small value. Substituting (1.65)
in (I.59) and equating the coefficients for identical powers of 1/kRe in the expres--
sion obtained, we arrive at the following system of differential equations:

(u— c) ((P; - a"'q)o) - “"% =0; :
(w—c) (9 — o) — o, = —i (@Y, — 2% _, 4 o', ).

k=12... (1.66)

Determining the solutions of the first equation of system (I1.66), it is then possible
by the method of variation of arbitrary constants successively to determine all the
functions ¢, . However, usually we are limited in the series (I.65) to omnly the
first term, permitting an error in determining ¢(y) on the order of (uRe)™t, and the
problem thus reduces to integration of the equation

(—c)(@" —ap)—u"p = 0. (1.67)

Equation (I.67) determines the development of disturbances in an ideal fluid. It
must be remembered, of course, that the effect of the viscosity is felt in the for-
mation of the function u(y), which, in turn, determines the variation across the
boundary layer of the velocity pulsation amplitude. Neglecting the viscosity lowered
the order of equation (I.59), in connection with which it is necessary to use another
approximate method of integration (I.59) discussed below to find the missing solu-
tions. The differential equation (I.67) has a singularity at the point y =y, ,

where u(y,) = c¢. This case corresponds to comparison of the propagation rate of

a neutral disturbance in the boundary layer with the basic flow velocity. It is
possible to explain the processes occurring in the layer y = y,, which is called the
‘'eritical layer," by the following argument [84]. Let us introduce the disturbing
motion vortex into the investigation

dvy - duy a "
r=w—-o—y- =(a¢—q))c

i@ (x—ct)

and the basic motion vortex R = ~du/dy. Then equation (I.67) can be represented as
follows:

o R
(ac—c)%-{-a—y-v,:O. (1.68)

Equality (I.68) expresses the condition of preservation of the vorticea in an ideal
fluid. If for y = Yo 9R/3y # 0, then (aRlay)vy # 0, for in the general case v (yk)

# 0. Therefore for observation of the equality (I1.68), its first term (u - ¢)3r/9x
must also be nonzero. For u - ¢ + 0 this can occur only in the case of 9r/9x + «,
that is, in a critical layer in the absence of viscosity the vortex of the disturb-
ing motion increaseg without limit, 1In order tobring the calculation scheme in
accordance with reality in tbe critical layer it is necessary to consider the
effect of viscosity which will also be done when finding the solutions of equation
(I.59) as a function of viscosity.
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The presence of a pole of the first order at the point y = yx in the function u/(u -
¢) determines [85] the form of the golution of equation (I.67)

9 - (y—yIPY—Yx): (1.69)

where P(y - yk) is a series with respect to powers of y - ¥ with coefficients that
depend on the parameter a. Since u(y) is represented in the vicinity of y = Yy by
a series with respect to powers of y -y, it is possible to rewrite (1.69) as
follows:

P(y) =(u—c)P(y, a).

Then the possibility of expansion of the gunction P(y, @) in a converging series
with respect to powers of the parameter O is proposed. Then, substituting

o) W= g() | g e 1 a g b ]
in equation (I.67) and equating the coefficients for identical powersofaz, we obtain
the system of differential equations

golu—c) I 2u'g, =0
glu—c) g, =g, ,(u—c)

I1.70
n=12 ... ( )

Solving the first equation of system (1.70), we determine with accuracy to a constant
factor

v
o= &p= s (u—cy2dy.
0

Knowing the function gn(y), it is possible to define Bot1’ using the equation

q:--g»\ +2 _L_g:q.l =g,

u—c
v

d 1
Ennly) = 0\ (u—c)? dyj (u—c)* g, (y)dy. a7

The integral in (I.71) is calculated by the formula

feoy [ A dy] dy.

0 0

Thus, two solutions are found for equation (I.67)

= . ;\ ’“ n
e (y) = (u C)':osn(y)a ' . (I.72)
where d A
L) =1, gn,.(y)=bf(u-C)"dyaf(u-%)zgn(y)dy;
Pa(y) = (1 — ) g (s)-a™" (1.73)
n=0
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where
" " ¥ \
8oly) = §(u — oy gan ()= §<u—c>-'dy 5 (— c)*ga(9)dy.
The series (I.72), (1.73) converge for any fixed o, for witha sufficiently large n
their terms are majorized [67] by the terms of the series

A (aM)™
(2n)!

It is possible to be convinced of this by substituting the expansion of u - ¢ with
respect to powers of y - Yi in the coefficients of the investigated series.,

Equation (I.67) is second order, in contrast to the fourth-order equation (I.59).

Therefore only two independent solutions of equation (I.59) are obtained by the in-
vestigated method. Two more linearly independent solutions of equation (I.59) can

be found [12] in exponential form

y
@ (y) = exp [é p(y) dy]- (1.74)

Substituting (I.74) in (I.59), we obtain the equation for determining the function

p(y) - RS S »
@—)(p' + pP—0) —u" = — g [p* 4 Bp%p’ 4 3p7 | 4pp” +

+p' —_ 2a3(p' -4 p”)-l-a‘]. (Ia75)

The soiugion of equation (I.75) is represented by a series with respect to powers of
(oRe)~

pw) -+ VaRepo(y) + pu(y) + Vl—--pa(yH-
a Re

(1.76)

The exponent 1/2 is selected from the condition of equality of the higher-order terms
in both sides of equation (I.75), which corresponds to the assumption of identical
role of viscosity and forces of inertia. The function p(y!/aRe) in the form of
(I.76) has a singularity at Re + ©, This is necessary for' the required solution
of (1.74) to vanish when y + 0, Substituting (1.76) in (I.75) and equating the co-
efficients before identical powers of (aRe)l 2, we find the system of equations:
(u—c)ps = —ip}; '
(=) (py + 2pgp,) = — i (4pip, + 6pip;);

from which it is possihie to determine the following successively:

Poly) = %= Vi(u-—“c);-

5 P
Pr(y) = —-—,;-7,:—.... (1.77)
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Two signs before the square root sign in formula (I,77) correspond to two linearly
independent solutions of equation (I.59). Limiting ourselves to the first two terms
in the expansion (I.76), by using (I.74) it is possible to determine:

5

oy
Qaly) = (u—c) *exp [— j Via Re(u —T)dyJ ; (1.78)

L5 y
Q) =(u—c) ‘e [ e —odn |
exp 0\ ViaRe(u L)ly,l .79

Approximate methods used to comstruct the solutions of ¢,(y) (1.72), ¢, (y) (1.73),
¢3(y) (1.78), ¢4(y) (I.79) lead to the appearance of a singularity for Y=V

where u(yk) = c. Here the problem of the sign of the argument of the value of u - ¢
for u < ¢ remains unexplained, If arg(u - ¢) = m, then on integration along the
real axis the point y = y, must be rounded from above; if arg (u — ¢) = -7, it must
be "rounded from below. kTo study the behavior of the solution of equation (I.59)
in the vicinity of the point y = Yy @ new independent variable is introduced [67],
[83]

Y o
e

1) -

where € is a small parameter, the magnitude of which is determined from the follow-
ing arguments.

Denoting &(y) = x{(n), on the basis of equation (I.59) we find

(u=--c)(x —a’e’y) — e’y = : Re rrl (1" — 2d%e "+ a'e'y). (1.80)

The functions u and u" in the vicinity of the point y = ¥ can be represented by the
series:

. 1 -
u—c=upent —ug(en) + -

W=+ u- -en - —uA (en) + . (1.81)

The value of € is assumed to be so small that the series (I.81) converge. The solu-
tion of equation (1.80) is found in the following form:

@) = xM) = Yo(W) + exa () + & (M) + - (1.82)
Subsituting {I.81) and (I.82) in (I.80) and equating the coefficients for identical
powers of €, we obtain the system of differential equations for determining the
functions xn(n_):
ixe! + e o == 0,
AV
a -t hn = Loy (%), (n 3 1); (1.83)

where L (x) are linear combinations of the functions Xg» Xys +*¢ and their
derivat?ves It is possible to determine the value € from tiie assumption that the

47

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8

FOR OFFICIAL USE ONLY

highest terms in the left and right sides of equation (I.80) have the same order of
smallness with respect to €

" i v
@w—ox ~—grea ¥ -

(1.84)

Considering the expansion of (I.81), on the basis of (1.84) we find the value of the
parameter

g = (a Re)ﬂllu. (I. 85)
Usually when determining the function X(n) we are limited to the zero approximatiogn

that is, it is considered that x(n) = Xg(n). Here an error on the order of (cRe)
is permitted, which is obvious from (1.82) and (1.85).

Let us consider the solution of the first equation of system (I.83). Let us use the
known substitutions [86], reducing it to a Bessel equation. Let us denote x'(; =
. Vv, ~1u1'£ = a, then the investigated equation becomes a second-order equation

Vg =0, (1.86)
- which gives two linearly independent solutions to the equation
X‘I)V _ ill;"l]x; = 0. (I. 87)

As the two remaining solutions it is possible to take the functions ¥ 1 1; Xnp =N
which obviously satisfy. equation (I.87). Let us introduce the new desgred funcgion
z = y/yn . Here
- ’ 1 | , -
) = Vz-z-l-z -Vﬂ.
" I - ] -1/ ’ o) -
L A U ) Mgk )b 'e,

and equation (I.86) is written as follows

£ )+ (i) -0 @

Let us vary the independent variable, denoting

Y .»a—l,':s_(_g_g)-.’/a; % - a—lla.(%§)~l/3.

From (I.88) in the new variables we obtain

d dz \ , vy, 0.
-“—E(E-‘E)T(E 9%)2 (1.89)
The solution of equation (I.89) is expressed in termg of the Bessel function of 1/3
order [87]
48
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z = cndipa (8) 4 c2d i (B),
or, considering the relation of the Bessel functions to the Hankel functions
L (8 =5 |HA® + HRE),
I ®) = o [ HRE) + - HIRE),
z:= Dy I3 (8) 1 Dy HEA(B).

Thus, considering the substitutions made, we obtain the following two linearly in-
dependent solutions (I.86):

X'I;-'l V ‘_l‘ “:;)1 ['_-:_ (iﬁl])m I ,
o Vo1 [%Uﬁln"” I

where it is assumed that f} - 'ﬂ/'z; arg (--) _:_ .
Since

HiY -»0 for 1 —» o0,

H{J >0 for n — — oo,

then it is possible to take the following expressions as linearly independent solu-
tions of the first equation of system (I.83):

Xn=1 yop=m;
3 n
X == [dn [ V7. 1) [TQ(I'M)“”] dr (130
oo g |
o= [dn [VE-HB[Lapnin) 4
Jn ] 3 n. (1.91)

The solutions of (I.90) and (I.91) have no singularities in the critical layer for
n=0.

Replacing the Hankel functions in (I.90), (I.91) by their asymptotic representations,
it is possible to reduce these expressions to the form (I.78) and (I.79). The region
in which the investigated representat ions are valid thus determines the path of by-
passing the singularity y = Yie*

Let us write [87] the asymptotic expansions of the Hankel functions of 1/3 order for
small values of the argument

HM® ~ () exp [+ (s=S55) 1o (1.92)
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(—n<arg<on)
) HB(E) ~ (%)llzexp[_i( _%)] (14 -], (1.93)
(—2n<argti<m),

where the dots indicate values on the order of 1/f and higher. Substituting (1.92)
and (I.93) in formulas (1.90), (I.91), it is possible to obtain [67] the expressions
for the functions X,3 and Xo analogous to formulas (I.78) and (I.79). From the
expansions of (I.929 and (,I.9g) it follows that the argument of the variable n must
satisfy the conditions: s

—n< 5 argn | <o

—2n %urgq I-%n-(‘n,

7 -
or g sl argn < %u l

—-lﬁln<argn< —’61 1 ) (1.94)

From inequalities (I.94) the following estimate is obtained:

— g n<agn<g. (1.95)

The inequality (I.95) shows that when going around the critical point y = y, it is
necessary to select the path in the lower halfplane., This physically means that the
motion approaches the neutral disturbances from the damping disturbance side. Then
it appears possible to use both the solutions ¢1(y) (1.72), ¢2(y) (1.73) ¢3(y)

(1.78), ¢4(y) (1.79), and the solutioms Xo1* X2 Xo3° Xo4* The solutions ¢1, ¢2,
¢3, ¢4 were used by Heisenberg in his paper [83]. Tietjens [88] performed his

calculations on the basis of Xa1’. Xo2* Xo3? Xpy+ Tollmien [24] and all subsequent
acthors used the solutions ¢ v 4’ 92 X 03’ b ¢ o 28 tﬁe basis for their research for ¢1 and ¢2

reflect the influence of the form of the velocity profile on the stability better
than Xo1® Xo2? and the functioms Y03 Xo4 consider the influence of viscosity on the

stability of a laminar flow more precisely than ¢3, ¢4. Hereafter, by linearly inde-
pendent partial solutions of equation (I.59) ve~ shall mean the expressions ¢1(y)
(1.72), 9,(y) (1.73), 95(y) = Xo3 ) (1.90), 9, (v) = Xa4 V) (1.91). The geheral

solution of the Orr-Sommerfeld equation is then written as follows:

Q1) <= @i (Y) -+ €292 (y) 4 Cs3(y) -+ CiPy (), (1.96)

where cl, Cys C3» c 4 are arbitrary constants determined from the boundary conditionms.
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§ I.7. Conatruction of the Neutral Stability Curve for Given Velocity Profile in
the Boundary Layer

Beginning with the general form of the solution (I.96) and considering the boundary
conditions (I.60), (I1.61) and (I.63), it is possible to obtain a un:Lform system of
linear algebraic equations with respect to the constants Cy» Cos c

€191(0) +- 29, (0)"| Cn(P:(o) =0;
¢,9,(0) -1 €,9,(0) - ¢;9,(0) == 0;
¢ [‘P;(I)'l" “‘Pl(l)l +e |‘P-(l) + a‘Pg“)] + (1.97)
ey |@a(1) 1 agy ()] = 0. '

From the condition of limited nature of the solution at infinity it follows that
In order that the uniform system (I.97) have nonzero solutions with respect

t3 cl, Cys Cgs it is necessary and sufficient that its determinant be equal to zero
@1 (V) ¢:(0) 91(0)
¢, (V) ?,(0) 93 (0) - 0.

Ao 4 a,(1) g()+ag() o (1.98)

In equation (1.98) relating the values of o, Re, ¢, let us neglect the terms which
include the sum ¢§(1) + a¢3(1), for the function ¢5(y) + a¢3(y) very quickly de—

creases with an increase in y, which is obvious from (I.78), and it is in practice
equal to zero at the boundary of the boundary layer. It is possible also to see
this, considering the results of the Holstein [89] and Schlichting [90] calculations.

Let us transform equation (I.98)

920) _ 9O [9(1) +apy (0] — — 50 [‘vl(l)+aq’.(l)]
20 9,0 [0y (1) + agy (D] — 9, 0) [97 (1) + agy (0] ~

Using formulas (I.72) and (I.73), we find
‘ 9, 0)=—c; 9,(0)=u (0)=uy

. , 1
@O0=0 ¢0)=——F.

As a result, we obtain the complex equation

_t O e 2z |
Y gy(0)  yxeuy 1HZ (L.99)
where , .
_uge |93 (h 4 a9, ()]

@ (1) - a,e (1)

Using (1.99), for real values of c(ci = 0) it is poasible to obtain the function
Re = R2(0) defining the neutral curve in the plane [0, Re] separating the region of
stability from the region of instability. The left-hand side of equation (1.99) is
represented as follows considering (1.9Q):
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L F1 ) ‘ "cf i [_:‘&;_(,-c)m] “*
—_— = T = F, (@) + iF; (@).
. Yx ‘{'3(0) —w \' tlnﬁin 2 (l-c):l/'z] l’C
forHi[ 5

The following notation was introduced: g: pmy w = E'Jz_s = ;,,x (V,;;aRe»)'l/_n‘.y The values of

the functions F_(w), F,(w) were first calculated by Tietjens [88]. They were later
calculated by various %uthors by expansion of the Hankel functions in series. A
comparative table of values of Fr(w) and Fi(w) calculated by Tietjens, Schlichting,
Pretsch, Maksyn, Holstein and Lin is preseiited in the paper by Holstein [89].

Table I.1 was compiled by the results of the Miles calculations [91].

The right-hand side of equation (I.99) can also be represented in the form

3 ,
————= E - iL,.
ety 142 ik

The values of Er(or., c), Ei(a, c) depend on the velocity profile in the boundary layer.

The method of their calculation based on replacement of the true velocity profile by
. parabolic or linear velocity distribution was used in the papers by Tollmien [24]
and Schlichting [92]. Pretsch [14] developed a method of calculating E, and E; when
using the velocity distribution profile corresponding to the third and fourth degree
polynomials and also sinusoidal velocity distribution. The Lin method [12] that
does not impose any restrictions on the form of the velocity profile in the boundary
layer, is used when determining Er and Ei'

Let us transform the left~hand side of the preceding equality

. , 2 2
¢ 2 € _ztin Z, 42,17 ¢

y,‘dlo l+3 y".“‘; I'f‘Z,'{'iZ{ - (‘ _}_ 2,)2-{-:? . yx'u(; "‘

c

A i L
T2V +7 vt

Using the expansions (1.72), (I.73) and considering only the terms with the first
powers of the parameter a which it is assumed is small, we find

c o) tan() .
2 = Uy € ——e—————— = (I —_—

o () +ag () ”[K""a(._c,z "0(”]» (1.100)
1

where K, = Y (4 — ¢)-? dy, the term O(1) combines the terms of order ome. On the
0
neutral curve where ¢ ;= 0, the integral Kl(c) has a singularity at y = Vi

In the vicinity ox the critical point we have the expansions:
—C =ty (y —yo) + % ey — ) b - oo
(= =t (Y — 4 -+ tiyetia (Y — g + - - -

1

(TR R —
(v = 1)

[l M;

—_—— —_— [ TR
";(y Yx) .
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Table I.1 o 7 o
Example: —0,118300 == —0,1183: 0,134301 = 1,343: —0,7778 — 0,1 = — 0,07778
w 5, 5 8, 5, o Fi
0.1 | —0.1183 00 | —0,7778 —o0I —0,1249 0 —0,9281 00 0.6901 01 | —0,3880 0!
02 | —0.2189 00 —0.1895 00 | —0,1355 01 —0,1328 (1]} 03544. 01 | —0,1936 0!
03 | —~0387 00 | —03485 00 | —0.1380 O! —0,1879 01 02427 01 | --0,1286 0!
041 —0518 00 [ —05712 00 [ —0,1221 OI | —02605 Ol 01871 01 | —0,9593 00
05 | —06194 00 | —0874 00 | —0,7156 00 | —03467 O} 01540 Q1 | —0,7616 00
0.6 | —0.6438 00 | -0.1263 01 0,3311 00 | —0,4283 0} 0,320 01 | —06284 00
07 | —05321 00 | —0.1716 Ol 0,195 0l —0.4641 01 0.1165- 01 | —0,5317 00
0.8 | —02345 00 | —0.2159 0l 03949 0l —0,4029 01 0,050 0! | —04578 00
0.9 0.2409 00 | —0.2484 O 05403 01 —0,2315 01 09613 00 | —03989 00
1.0 0.8061 00 | —0.2605 01 05689 01 —0,1210 00 08916 00 | —0,3503 00
1.1 0.13:2 01 —0.2522 01 0,4895 0! 0,1672 01 0,835 00 | —0,3090 00
1.2 01770 01 —0.2298 0l 0.3640 01 02662 0Ol 07897 00 | —02731 00
1.3 | 0202 01 —0.2012 0] 02445 0! 0,2973 01 07516 00 | —0.2412 00
1.4 0.2268 01 —0.1717 0l 01521 0! 0,2897 0! 07197 00 | —02122 00
1.5 0.2386 01 —0.1438 0l 08724 00 0,2659 0! 0,6926 00 | —0.1853 00
Tie 0.2430 (1] —0,1i86 0l 0,4354 00 0,2385 0l 0,6693 00 [ ~-<0.1601 00
- 1.7 0.2478 01 —0,9606 00 01412 00 02129 0! 06491 00 | —0,1360 00
1.8 0,2461 o1 —0.7580 00 | —0,6314 -0l 01910 0! 06314 00 | -=0,1128 00
1.9 0.2467 0l —0.5774 00 | —02138 00 01727 0l 0.6157 00 | —0,8996 —O!
2.0 ' 02439 0l —04126 00 | —0,3339 00 0,157¢ 01 0.6014 00 | —0,6742 —0I
21 0 0240 0l —0,2619 00 | —04378 00 0,1443 0l 05883 00 | —0,4491 —0I
2.2 I 0,2352 0l —u,1235 00 | —05334 00 01325 0! 0,5760 * 00 | —0,2227 —0I
23 0 0224 0 03379 —02 | —06242 00 01213 01 0,5641 00 0,6422 —03
2.4 0.2227 01 01191 00 | —0,7107 00 ol101° 0! 05523 00 02394 —O01
25 02152 0l 02234 00 | —0.7912 00 0,983¢ 00 0,5403 00 0,4772 —01
2.6 02069 01 03155 00 | —0.8625 00 0,8584 00 05277 00 0,7202 —01
2,7 01980 01 03948 00 | —0,9208 00 0,725¢ 00 05143 00 0,9685 —00
2.8 0,188 01 04604 00 | —09625 00 05855 00 04995 00 | 0122 00
2,9 0,1788 01 05118 00 [ —09845 00 04418 00 04831 00 0,1479 00
3.0 0,i689 01 0,587 00 | —0,985I 00 02981 00 0,4646 00 0,1739 00
3,1 01592 01 05715 00 | —0,9640 00 0,1583 00 0,4435 00 01998 00
_ 3.2 0.1497 01 05809 00 | —09225 00 0,2965 —01 0,4195 00 02252 00
3.3 | 0.408 01 05779 00 | —08632 00 | —0,8679 —0! 0,3922 - 00 0,2495 00
3.4 0,132 oI 05641 00 | —0,7805 00 | —0.1871 00 03611 00 02719 00
3.5 0.1250 01 05411 00 | —0,7055 00 | —0,2695 00 0,3264 00 0,2915 00
3.6 01184 0l 05108 "00 | —06151 00 | —0,3333 00 0,2881 00 03071 00
3.7 01127 01 04751 00 | —05223 00 | —03787 00 0,2468 00 03174 00
3.8 0.1080 0l 04356 00 | —0,4304 00 | —0.4068 00 02036 00 03213 00
301 000 ol 03942 00 | —03424 00 | —0.4194 00 0,1600 00 03180 00
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w G- B 5; 8; F, Iy
4,0 0.1011 01 0,3522 00 —0,2603 00 —0,4183 00 0,1180 00 0,3072 00
4.1 0,9889 00 0,3109 00 —0,1859 00 —0,4058 00 0,7976 01 0,2893 00
4,2 0.9737 00 0,2714 00 —0,1203 ~ 00 —0,3842 00 0,4699 —01 0.2656 00
4,3 0,9646 00 0,2343 00 —0,6392 —01 —0,3556 00 0,213 —01 0,2378 00
4.4 0,9606 00 0,2004 00 —0,1708 —01 —0,3222 00 02384 —02 0,2081 00
4,5 0,9608 00 0.1700 00 0,2044 01 —0,2859 00 —0,9187 —02 0,1785 00
4,6 0,9644 00 0.1433 00 0,4911 —0! —0,2483 00 —0,1455 —01 0,1507 00
4,7 0,9704 00 0,1203 00 0,6962 -—01 —0,2109 00 '—0.l493 —01 0,1258 00
4.8 0,9781 00 0,1010 00 0,8284 —0i —0,1749 00 —0,1164 —0! 0,1045 00
4.9 0,9867 00 0,8524 —01 0,8974 —01 —0,1413 00 | —0,5938 —02 0,8690 —01
5,0 0,9958 00 0,7267 —01 09134 —0I —0,1108 00 0,128 —02 0,7280 —01
5.1 0,1005 01 0,6297 —01 0,8867 —01 —0,8371 —01 0,8728 —02 06212 -0l
5,2 0,1013 0t 0.5580 —01 0,8272 —01 —0,6041 —01 0,1625 —01 0,5416 —01
53 0,102t 01 0,5076 —01 0,744¢ —01 —0,4032 —01 02329 —01 0,4855 —01
5.4 0,1028 0l 0,4749 —0i 0,6466 —01 —0,2514 —01 0,2958 —01 0,4482 —0!
5,5 0,103+ S ool 0,4562 —01 0,5411 —01 —0,1285 —01 0,3498 —01 0,4257 —01
5,6 0,1039 0l 0.4482 —01I 0,4341 —01 -—0,3737 » —0‘2] ~0.3942 01 04143 -01
5,7 0.1043 0i 0.4478 —01I 0,3305 -—01 0,2574 —02 0,4292 —01 0,4109 —01
5.8 0,1046 0l 0,4525 —01 0,2339 —01! 0,6497 —02 0,4553 01 0,4130 —0!
© 5,9 0,1048 01 0.4601 —01 0.1471 =01 0,8452 —02 04731 —01 04184 —01
6.0 0,1049 0t 0.4689 —01 0,7167 —02 0,8851 —02 0,4836 —01 0,4255 —01
6,1 0.1049 01 0.4774 01 0,8349 —03 0,8080 —02 0,4878 —01 0,4329 —01
6.2 0,1049 01 0,4848 —01 —0,4280 —02 0,6487 —02 0,4868 —01 0,4397 —01
6,3 ,1048 0l 0,4902 —01 —0,8229 —02 0,4376 —02 04815 —01 0,4451 —0I
6.4 0.1047 01 0,4935 —01 —0,1111  —-01 0,2002 —02 0,4729 —01 0,4489 —O01
6,5 0.1046 0l 0,4942 —01 ~0,1303 —0! —0,4284 —02 0,4620 —01 0,4506 —01
6,6 0.1045 01 0,4926 —0! —0,1415 —01 —0,2759 —02 0,4495 —0I 0,4503 —01
6.7 0,1043 0l 0,4888 —0! —0,1459 —01I —0,4876 —02 0,4360 —0I 0,4481 —0!
6.8 0,1042 01 0,4830 —0I —0,1451 —0I —0,6706 —02 0,4222 —01 0,4440 —0!
6.9 0,1040 01 0,4755 —0I —0,1403 01 —0,8210 -—02 0,4084 —01 04384 —01
7.0 0,1039 01 0,4667 01 —0,1328 —01 —0,9376 —02 0,3951 © —0l 04314 —01I
7.1 0.1038 01 0.4568 —01 -0,1236 —01 =0,1021 —01 0,3825 —O01 » 0,4234 --01
7,2 0,1037 0l 0,4463 —01 —0,1136 =01 —0,1075 01 03706 —01 04146 ~—01I
7.3 0,1035 01 0,435¢ —01 —0,1034 —o01 —0,1101 —01 0,3597 —01 0,4054 —01
74 0,1035 0t 0,4244 —01 —0,935! —02 —0,1105 —01 0,3497 —01 0,3959 —01
- 7.5 0.1034 01 0,413¢ —01 —0,8436 —02 —0,1091 01 0,3406 —O01 0,3863 —01
7.6 0,1033 0l 0,4026 ~—01 —0,7615 —02 —0,1063 —01 03324 —01 0,3769 —01
7.7 0,1032 0l 0,3922 01 —0,6901 —02 —0,1024 —01 0,3248 —01 03676 —o0l
7.8 0,1031 0t '0,3822 —0! —0,6294 —(02 —0,9798 —02 0,3180 —01 03587 —o01
7.9 0,103} ol 0,3726 —01 —0,5793 —02 —0,9317 —02 03117 —01 0,3502 —01
54
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w \ 5 §: g, 3 F, Fi

8.0 01030 0l 03635 —0I | —05388 —02 | —0,8826 —02 03058 —01 03421 —01
8,1 0.1030 Ol 03549 —0I | —05067 —02 | —0,8344 —02 0,3004 —01 03343 —01
8.2 01020 o0l 03468 —01 | —0,4818 —02 | —0,7884 —02 0,952 —0l 03270 —01
83 01028 01 03362 —O01 | —0,4627 —02 | —0,7455 —02 0.2903 —0! 03201 —O01
8.4 0.1028 0l 03319 —01 | —0.4481 —02 | —0,7062 —02 0.2855 —0! 03135 —0l
8,5 01028 0l 03950 —0i | —0,4368 —02 | —0,6708 —02 0.2810 —01 0,3073 —01
8.6 01027 Ol 03185 —01 | —04279 —02 | —0,6391 —02 02765 —01 0.3014 —O1
8.7 01027 01 03192 —01 | —04206 —02 | —0.6109 —02 02721 —01 0.2957 —0I
8.8 00027 01 03062 —01 | —04140 —02 | —0,5859 —02 0.2678 —0! 0.2903 —O1
8,9 0102 Ol 03005 —01 | —04079 —02 | —0,5638 —02 02636 —01 02851 —O0i
9.0 01026 0l 02930 —0I | —04017 —0I | —05410 —02 02595 —01 0,2801 —01
9.1 01095 0l 0.2896 —01 | —03953 —02 | —0.5262 —02 02554 —O01 02752 —0I
9.2 01025 0l 09844 —01 | —0,3886 —02 | —05100 —02 02514 —O01 0.2705 —0l
9.3 01025 01 02794 —0f | —0,3815 —02 | —0,4951 —02 0.2475 —01 0,2659 —O0
9.4 0104 0 02745 —0I | —03741 —02 | —0,4812 —02 0243 —01 0.9615 —01
9.5 01024 0l 0698 —01 | —03664 —02 | —0.4681 —02 02399 —01 02572 —0I
9.6 01024 01 02652 —01 | —03584 —02 | —0,4556 —02 09232 —o0I | ,0.2530 —O01
9.7 01023 0l 02607 —01 | —03503 —02 | —0,4436 —02 02326 —01 | 02488 —01
9.8 01023 o0l 02563 —01 | —03422 —02 | —04319 —02 02291 —01 | . 02448 —O1
9.9 01022 01 02520 —01 | —03341 —02 | —0.4206 —02 02251 —0l 02400 —O01
100 01022 o1l 02479 —0I | —03261 —02 | —0,4096 —02 02223 —01 03371 0l
—0.1| 01047 00 05379 —01 | —09804 00 | —04434 00 | —0,6555 Ol 03880 0!
—0,2| 01964 00 09065 —0I | —0.8557 00 | —03020 00 | —0.3197 01 01937 o1
—0.3| 02763 00 01156 0 | —07451 00 | —0,2019 00 | —0.2080 O 01288 0l
—0.4| 03459 00 01320 00 | —0.6492 00 | —0,1308 00 | —0.1523 01 09627 00
—0,5| 04066 00 0.1424 00 | —05667 00 | —0,8004 —OI | —0.1191 01 07671 00
—0.6] 04597 00 0.1485 00 | —0.4963 00 | —04377 —01 | —0,9699 00 06363 00
—07] 05062 00 01515 00 | —04360 00 | —0,1782 —01 | —0,8130 00 05425 00
—0.8| 05372 00 01523 00 | —03848 00 07189 —03 | —0,6961 00 04721 00
—0,9] 05834 00 01515 00 | —03404 00 01389 —01 | —0,6058 00 04171 00
—1.0| 0615 00 0.1496 00 | —0,3025 00 02314 —0I | —05341 00 03730 00
—11| 06441 00 0470 00 | —02698 00 02954 —O0! | —04758 00 03368 00
—1,2| 06696 00 0.1438 00 | —02414 00 03383 —01 | —0.4276 00 03066 00
—1.3| 06925 00 01403 00 | —02168 . 00 03658 —O0I | —03872 00 02810 00
—1.4| 07131 00 01365 00 | —0,1954 00 03819 —01 | —03528 00 0259 00
—1.5| 07316 00 01327 00 | —0.1766 00 03896 —0I | —03233 00 0239 00
~1.6] 07488 00 01288 00 | —0,1601 00 03911 —0i | —02977 00 02232 00
17| o763 00 01249 00 | —0,1455 00 03882 —01 | —02753 00 02085 00
—1.8] 07776 00 0210 00 | —0,1327 00 03821 —O0I | —0.2556 00 0,194 00
—19| 07903 00 01172 00 | —oJ0212 00 03737 —0I | —02381 00 0,186 00
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Table I.1 (continued)

L 5r & 5 8 Fr Fi
—20 0,8019 00 | 01135 00 | —01111 00 03637 —01 | —0,2225 00 01731 00
-2 08125 00 ‘ 0.1099 00 | —0,1020 00 03527 —01 | —0,2086 00 0,1635 00
—22 0,8223 00 0.1065 00 | —09390 —0i 0.3411 —0I | —0,1960 00 01549 00
—23 08314 00 01031 00 | —0,8662 —0! 03291 —01 | —0,1846 00 0,1470 00
—24 0.8397 00 09990 —01 | —0,8007 01 03170 —01 | —0,1743 00 01397 00
—25 08474 00 0,9679 —01 -0,7415 —01 0,3040 —01 | —0,1649 00 01313 00
—2,6 08545 00 09380 —01 | —0.6881 —01 02931 —0! | —0.1563 00 01269 00
—27 0.8612 00 0.9093 —01 —0,6396 —01 02814 ~O0t | —0.148¢ 00 01213 00
—28 0.8673 00 0,8817 -0l —0.5956 —O0t 02702 —01 | —0,1412 00 01160 00
—29 0.8731 00 0.8552 —01 | —0,5555 —0I 02502 —01 | —0,1345 00 ol111 00
—3,0 0.8785 00 0,8298 —01 | —0,5190 0l 02487 —01 | —0,1283 00 0,1066 00
-3, 0,8835 00 0.8055 —01 | —0,4856 —0I 0.2385 —01 | —0.1226 00 0,1023 00
—3.2 0.8882 00 07821 —0i1 | —0,4550 —0! 02288 —01 | —0.1172 00 09838 —O0!

- —33 0.892%6 00 07597 01 | —0,4269 —01 02195 —01 | —0,1123 00 09467 —O1
—34 08967 00 0.7382 —0I —0,4011 —01 02106 —01 | —0,1077 00 09118 —01
—35 0,9006 00 07176 =0l —0,3774 —01 02021 -—01 | —0,1033 00 0,8791 —01
—36 09043 00 0,6978 --01 | —0,3555 —01 0,1939 =01 | —0,9931 <0l 0,8483 —01
—37 0,9077 00 06788 —01 | —0,3353 —01 0,182 01 | "—0,9552 ~—01 08192 —01
—38 09110 00 0.6605 —0! | —03166 —01 | 0,788 —01 | —0,9197 —0l 0,7917 ~01
—39 09141 00 0.6430 —01 | —0,2993 —01 0,1717 —01 | -—0,8862 —0I 0,7658 =01
—40 09170 00 0.6262 —0I —0,2832 —01 '0.1650 —01 | —0,8547 —01 0,7412 —01
Let us calculate Kl(c)

‘t
K,(c>--j<u~—c>-2ay=—7—‘———- Lein 2
% wlge(t—yy) w1

Selecting the integration path in the lower halfplane, which, as has already been
noted, corresponds to the physical picture of the development of disturbances from

damping (ci < 0) to neutral (ci = 0), we find

K, (c) = ____l__ 4-

U .
= In—=%— —agi].
Yoot (1 —y,) ( l—y, ‘)

It is possible to simplify formula (I.10l1), assuming that c = ykul‘:’

&
x‘;l s,

K0t S )

c(u, —c) u,; U, —

Then considering that ¢ << 1, we set u;‘ -c = “1|c

Inc—In(ux—c) ~ne—lnu, ~ Inc,
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for uﬁ % 1. Then (I.102) is simpliffed further

-

_ K, () ==—ci. +:—.”},(Inc——ni).

* K (Ia 103)
Z; 040
0375
( 2( \N';'”
95 ' <7
[ e b TN
0 /"\*\0,.7& X
)4 - 004
VIZAN Kaid 17N 0,.17\'%
g\ | ™ ~lsa
9J 4475 778 4.0
02NN\ 475 \1 S 7
€ P SN P77
02 . B s
a.m‘.\”\t i\‘\ 22 | ”57\05
01 0.0y 78 ?\bﬁ_a’/a .
’ 926 92 e
LT
‘ 29 25 27 729 a4l a4 d4  J7T  JY T T
: zyﬂe'
Figure I.1l4. Neutral curves for the Blasius profile.
I -- calculation using formula (I.101); II — calcu~-
lation using formula (I.103).
The results of the calculations performed for the Blasius profile using formulas

(1.101) and (I.103) are represented in Figure I.1l4. Curve I calculated on the basis
of formula (I.101) by V. V. Droblenkov is located very close to the Lin neutral
stability curve. Curve II was constructed on the basis of expression (I.103).

All further arguments are made for Kl(c) defined by (I.103), although it is possible
to use formula (I.101) entirely analogously.

Substituting (I.103) in (I.100), we find the real and imaginary parts of the value
of z

B _u_{, ugou uge (1.104)
4= u; + Ka Ine+ (t —cp*’
N “:
Zl == '—n-uoc._'—a..
ty (1.105)

Thus, it is possible to propose the following scheme for calculating the neutral
stability curve, which is an altered scheme for the known graphoanalytical method
of the German school (Tietjens, Tollmien, Schlichting)., The change in the
direction of simplification took place when calculating the functions Er(a, c), E 1

(@, ¢).
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Figure 1.15. Graphical solution of the characteristic
equation of the problem.

The curve F{ = F_(F ) (Figure I.15) is constructed by Table I.1 on the coordinate

axes [Fr, Fi]. iThe curves Ei E (Er) are plotted on the same graph for fixed

values of c and different o. The corresponding values of the variables w and o are
noted on the curves. Preliminary calculaticns are performed by the formulas

l:, @, c) = c" z,,z }-z, .
(e €) Yyelly (l +2)+ ? '
E‘ (G, C) — [4 F44 (1.106)

vty (1 42) 42"

where z. and z, are determined from (I.104), (I.105).

Joint values of o, c,w are found at the points of intersection of the curves E (Er)

and (Fi(Fr) Since the velocity profile investigated for stability is given, the values
of Ve and uk are defmed for the obtained value of Ce

the obtained o is calculatea

Then the Re number corresponding to

e (3 2

L4

Thus, a neutral curve in the plane [Re, a] will be constructed. Usually the neutral
stability curve is constructed in the coordinates [Re*, o*] which are obtained from
values of Re and o by multiplication by the ratio 8*/§. The neutral stability curve
for the Blasius profile, the data for which taken from reference [13] are presented
in Table 1.2, was calculated by the proposed scheme as an example. The graphical
solution of the basic equation of the problem is illustrated in Figure I.15. Figure
I.16 gives the neutral stability curves for the Blasius profile obtained by Tollmien
[24], Schlichting [92], Pretsch [14], Lin [67], Zaat [95], and the curve constructed
by the above-discussed scheme are plotted in Figure I.16.

The Tollmien-Schlichting method does not require any additional assumptions when
solving equation (1.99). However, it is very labor-consuming, for the required
range of variation of the parameter ¢ in the general case of investigation of an
arbitrary velocity distribution profile is unknown. Accordingly, let us discuss

the analytical method of calculating a neutral curve by the basic ideas of Lin [67].
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Figure I.16. Neutral stability curves for the Blasius profile (criti-
cal numbers Regr: Pretsch, 680; Schlichting, 575; Zaat, 321; Lin, 420;
Tollmien, 420; proposed scheme, 295). 1 — calculation by the pro-
posed scheme; 2 -- Schubauer and Skramstad experiment.

Key: a. Tollmien c. Zaat e. Schlichting
b. Lin d. Pretsch
Fr
25 ‘
20 \\
15 \
e e 10
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5 4 2 0\ 2 w
-g5

Figure I.17. Graph of the function §, = § (w).
The complex equation (I.99) is written as follows

z
P42

Fw)(1 4 A) == (1.107)

where the value of A is defined by the equality
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Table 1,2, Howarth Profiles
y u - o du 5 & dw
S T VST w YU
r=0 r=-=0,025 r == —0,050 r= —0,07%
n |z | ;' | - n | oz | " l el ale | = 2 | & | P8
0 [} 1.680 0 0 0 1,776 —0.566 0 0 1.853 -~1,014 0 0 1,916 -1,38
0,0395 0,066 1,678 —0,128 0.084 | 0,148 1,725 —0,602 0,080 | 0,161 1,760 —1,003 0,094 | 0,173 1,786 —1,42
0,079 0,133 1,676 —0,112 0.168 0,290 1.659 —0,942 0.178 0,312 1,654 —-1,32 0.187 0,333 1,635 -1,62
0,1183 0,199 1,666 -0,252 0,252 0,425 1.563 -1,374 0,267 0,454 1,522 —1,67 0,281 0,479 1,747 —1,90
0158 | 0265 | 165 | —0.445 | 07| 0351 1,426 —1.881 | 0356 | 0582 ) 1,355 | —207 | o1 o600 | 1.287] —2,19
0,198 0,330 1,635 —0,685 0,421 0,664 1,248 —-2,35 0.445 0,604 1,156 —2,40 0.468 0,119 1,077 —2._41
0,237 0,394 1,601 —0.554 0,505 | 0,760 | 1,048 ~-2,65 0.534 | 0,787 | 0,934 —2,56 0,561 0,809 | 0,845 —2:4i
0,276 0,456 1.560 -1.270 0,589 0,858 0.810 -2,69 0,623 | 0,859 0,700 -2,47 0,655 0.877 0,624 -2,27
0316 | 0.517] 1,500 | —1.595 | 0,673 0.897 | 0,592 | —246 | o2 | o3| o0502| —2,37 | o748 0926 | 04| 1.9
0,356 0,573 1,431 -1.920 0,737 0,938 0,401 —2,08 0,801 0,950 | 0,333 -1, 0,842 0,959 | 0,280 —1,44
0,395 0,630 1,330 —2,220 0,841 0,965 0,234 -1,51 0,889 0,973 0.206 -1,21 0,935 0,978 0,159 —0,98
0,474 0,720 1,154 —2,69 0,926 0,92] 0,199 —-1,02 0,978 | 0,986 | 0,119 —0,48 1,029 | 0,990 | ¢ 085 —0,61
0,553 0,812 0.M9 —2,900 1,004 64,991 0,080 -0,62 1.067 0,994 0,056 —0,45 1,122 0,905 0,042 —0,33
0,632 0,876 0,704 -2,790 1,003 0,99 0,038 —0,35 1,157 0,997 0,033 —0,24 1,218 0,998 0,019 -0,17
0,711 0,923 0,406 —2,420 1.178 0,998 0.9 -0,18 1,246 0,999 0,017 —-0,11 1.312 0,909 | 0,008 -0,08
0,79 | 0,956 | 0,324{ ~1,90 | 1,262 | 0,920 | 0008 | —0,8 | 1.335] 1,m0) 0009} —0,65 | 1,403} 1,000| o0m3| —0,03
0,870 0,976 0.197 -1,343
0,949 0,988 0.1 -0,864
1.028 0,994 0,057 —0,505
1,107 0,997 0.028 —0,269
1,181 0,999 0,012 —0,131
r==0,1 r= 4,02 r = 0,050 r == 0,075 r=90,1
" l 7 |' | on | | z'| ol ala| = | | ilwlelalslasl =
0 i 0 1,872 —1,68 0 0] 1,559 0,735 © 0 1,408 1,73 0 0 1.190 3,14 [} 0 0,829 5,34
0,098| 0,184 | 1,807 —1,73 | 0,074 0.116 | 1,610 0,607| 0,068 ] 0,100 | 1,523 1,58 1 0,062 0.079 | 1,362 2,97 | 0,055 | 0,053 1,117 5,17
0,195 0,352 | 1,632 —1,87 | 0,148 0,237 [ 1,643 0,215} 0,136} 0,205 | 1,618 1,14 | 0,124} 0,168 | 1,534 2,48 | 0,110 0,122 1,387 4,63
0,283 | 0,502 [ 1,440 —2,07 | 0,176 ] 0,282} 1,645 0 0,205} 0,317 | 1,678 0,423| 0,186 | 0,267 | 1,658 1,67 { 0,164 | 0,205 ] 1,620 3.74
0,391 0,633 | 1,228 —2,u8 | 0,201 0,358 1,645 | —0,404{ 0,235 | 0,367 | 1,682 0 0,248 0,373} 1,731 0,572 0,219} 0,299 ( 1,787 2.48
0,439 0,741 | 0,999 | —2,39 | ©,2051 0,478 [ 1,380 | —1,17 | 0,273 0,430 | 1,674 | —0,555| 0,275 | 0,420 | 1,740 0 0,274 0,399 1,882 0,916
0,586 | 0,828 | 0,767 ] —2,33 | 1,360 | 0,591 | 1,464 | —1,98 | 0,341 § 0,542 | 1,600 | —1,53 | 0,310 0,480 1,730 | —0,708| 0,305 | 0,458 | 1,883 1]
0,681 | 0,802 | .53 —2,07 | 0,443 0,692 | 1,290 —2,68 | 0,409 0,645 | 1,463 | —2,49 | 0,372 | 0,585 | 1,625] —1,99 | 0,329 | 0,503 | 1,882 | —0,803
0,782 | 0,936 { 0,367 | —1,69 | 0,517] 0,779 1,075 | —3,09 | 0,477] 0,739 | 1,266| —3,21 { 0,434 | 0,682 1,486 | —3,13 | 0,384 1 0,605 | 1,795 | —2,51
0,879 ! 0,965 0,236 —1,23 | 0,591 0,850 | 0,643 | —3,16 | 0,545| 0,815 | 1,043 | —3,56 | 0,496 | 0,767 { 1,270 | —-3,87 | 0,438 | 0,608 | 1,640 | —3,94
0,977 0,982 | 0,1201 —0,80 | 0,665| 0,904| 0,618| —2,97 } 0,614 | 2,876 | 0,789 | —3,48 | 0,558 | 0,839 1‘.0]5 —4,1510,4981 0,781 | 1,391 | —4,89
1,075 ¢,991 10,072} —0,48 [ 0,739 0,942} ¢, 421! —2 46 | 0,682 | 0,924 | 0,565 | -~3,06 | 0,620 | 0,894 | 0,759 | —3,95 | 0,548 | 0,848 1,112] —~5,16
1,172 | 0,996 | 0,037 | —0,24 ) 0,813 0,968 | 0,268 | —1,90 | 0,750 | 0,955 | 0,391 | —2,43 | 0,682 | 0,932 | 0,530 | —3,48 | 0,603 | 0,901 | 0,834 { —4,87
1,271 0,998 ; 0,006 | —0,12 { 0,836 { 0,984 0,159 | —1,25 | 0,819 0,975] 0,250 | —1,75 | 0,744 | 0,960 6,35‘ 2,64 | 0,658 | 0,939 | 0,575 | —4,16
1,370 | 0,999 | 0,007 | —0,06 | 0,960 | 0,991 | 0,085 —0,75 | 0,886 | 0,987 | 1,150 | ~1,15 | 0,806 | 0,977 | 0,209 | —1.86 | 0,712 | 0,965 | 0,378 | —3,18
1,468 1,600 { 0,003 ] —0,02 § 1,035} 0,996 0,045 | —0,42 | 0,955 0,993 | 0,083 [ —0,70 | 0,868 | 0.990 | 0,119 | —1,20 | 0,767 | 0,981 | 0,234 | —2,23
1,1081 0,008 | 0,020 —0,22 1 1,023 0,997 | 0,043 | —0,38 { 0,930 | 0,995 0,063 | —0,71 0,8}‘4 0,990 0,131 ] —1.41
1,180 10,999 0,009 | —0,10 { 1,001 0,999 | 0,007 { —0,19 { 0,992 | 0,988 | 0,02¢ | —0,38 0';877 0,995 0,070 | ~0,82
1,2331 1,000 1 0,004 —0,04 | 1,160 | 1,000 | 0,008 | —0,09 | 1,083 | 0,999 | 0,012 | —0,19 | 0,932 | 0,998 | 0,036 {.—0,43
13,3290 1,000 ] 8,001 | —0,01 | 1,228 ( 1,000 | 0,003 | —0,04 | 1.116 | 1,000 | 0,003 | —0,08 | 0,985 | 0,999 | 0,021 | —0,20
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A = Yptly

— — L

c

In the first approximation it is possible to consider A = 0, which, as the calcula-
tions demonstrate, gives good accuracy when calculating the critical Reynolds num-
bers. It is theoretically possible to make the following approximation, defining
the numerical value of A by the first approximation. Hereafter, the approximate
equality 4 = 0 will be used everywhere. It makes it possible to transform equation
(1.107) to the form

. N SR RS RN Sy
"-I'I'F(m')=—l+—|~—l-;' l‘.(w)—l-—F(W) 142 (1-108)
The complex equation (I.108) is equivalent to two real ones
8’1 (w)y=1+ 2, (I.109)
&i(w) = 2. (1.110)

The right~hand sides of (I.109) and (I.110) are defined by formulas (I1.104), (I.105).
The functionsy, == §, (@), &; = &, (@) were first calculated by Lin [67]. In Table I.1,
the results were studied from calculating §,, %, made by Miles. [911. Figures

I1.17 and I.18 illustrate the graphs for the variation of §,(®) and %.(®) Then the
calculation procedure consists in the following. Let us be given a defined value

of w,. By the graphs of §, (w), &, (w) let us determine &, (w,), &; (,). From equation

(1.110) N
— Tty —5 = & (W),
HA.
which is solved for a given velocity distribution profile graphically, we find ¢,
which means also Vi “llc’ uié corresponding to it. Using (I.104) and (I.109), let

us determine the magnitude of the parameter o

i Y ,
TT—ep w . (1.111)
ﬁ,(w,)——l+—,—uo-cﬁlnc :
- ~ K

Then let us calculate the value of

- (2

u;-a Yx

(1.112)

The neutral stability curves constructed graphoanalytically and by the method de-
scribed which is based on the ideas of Lin, is illustrated in Figure I.19.

§ 1.8. Formulas for Finding the Critical Reynolds Number

The form of the graph Re = Re(a) having the shape of a loop is defined by the two-

valued nature of the function w = w(F,), This fact 18 a reflection of the dual

role of the viscosity in controlling ~ the disturbances occurring in a laminar

boundary layer. On the other hana, the viscosity is the cause of the occurrence of

a phase shift in the vicinity of the wall between the velocity components of the
61
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Figure I,18, Graph of the function i = §: (@)
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- Figure 1.19. Comparison of analytical and graphoanalytical methods
of constructing a neutral curve. 1 -~ graphoanalytical method;
2 —- analytical method.

disturbing motion, such that the Reynolds stress I = --(:)vxvy begins to transfer energy

from the basic motion to the disturbances [12]. On the other hand, the viscosity has
a damping effect on the disturbances occurring in the fluid.

Therefore the velocity profile without inflection points for Re + « (v - Q) is stable
with respect to sinusoidal oscillations of any wavelength, for the vorticity distri-
bution across the boundary layer has a stabilizing influence on the disturbances
that arise [12]. With an increase in viscosity, the Reynolds stresses arise, which
insure an inflow of energy into the disturbances in the wail region at the expense
of main flow emergy. Thus, in some range of values of o and Re, the disturbances
build with time. The instability region arises inside the neutral curve on the
plane [a, Re]. Further increase in viscosity leads to an increase in energy dissi-
pation, ag a regult of which all of the disturbances occurring in the laminar boun-
dary layer are extinguished, The minimum Reynolds number for which neutral oscilla-
tions are still possible is called the critical Reynolds number for given velocity
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profile. The curve N & (“')'., shown in Figure I.18 has a peak for w = 3.21
equal to 0.58. Therefore, if 2z, (c) < 0.58, there are two values of w and, conse-

- quently, two values of Re corresponding to one value of c. If ¢ is such that zi(c)=
0.58, then there is only one value of w, and, consequently, one value of the Re
number. The parameter o defining the disturbance wavelength will also be uniquely
defined by formula (I.111).

In order to find the critical Reynolds number (Re _), it is possible to indicate the
following procedure based on previous ar'uments. For a given velocity profile in
the boundary layer for maximum value of - -='0,58 a value of ¢ is found from the
equation

N
N iman

. N;
0,58 = —n-uyp-c —, (1.113)

N

which is solved graphically. After determining c, we find the values of Vi u'l':’ ui;

~

Since the value of &, : 0,58 corresponds to w = 3.21 and ,\-,' = 1,499 ~ 1,5, using for-
mula (I.111), we find the critical Reynolds number

‘

“‘ u‘-cu"
33(I—c;’((),5-{-—?— . Inc)
u 113

_ (1.114)
(a) Rer = % .

u(',-u;yg.-c
Key: a. cr
Considering the assumption made earlier that c = yk-u.l‘(, let us rewrite (I.114) as

follows:

s

“' ll'c ~ ’
33(:—@'-'(0,5 po B Inc)
u u

L3 X
Rel\‘ » = T30
uy-cty;

or considering (I.113)

33 (1 -—L‘)(U,S {«i(:'- + 0,185 Inc)
u,.
Rey, - - . (I.115)

c22
ty +€*Y;

For small c when u(‘) > ul“ and ¢ = ykuc‘), formula (I.115) is atill simplified

33u, (1 -—¢)? (1,5 -|- 0,185 ln )

Rey, =

For example, let us determine the critical Reynolds number for the Blasius profile
(see Table I.2). Solving equation (I.113) graphically, we find ¢ = 0.415, y, = 0.25,
ul'( = 1.59, u; = -1.06, 1n ¢ = -0.883, u(') = 1.68. By formula (I.115) let us calculate

Re__ = 942, Rex_ = 322.
cr cTr

Considering the curve for the function &; = & (@) (Figure 1.18), it can be noted that
in addition to the peak in the interval 2 < w < 5, there are peaks of the same type
in the intervals -3 < w < 0; 5 <w < 8, where the behavior of the neutral curve can
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formally be of the same nature as in the first interval, Detailed calculations by
the scheme discussed in § 1.7 demonstrated that in the region of negarive w the
critical Reynolds numbers are also found to be negative which has no physical mean-
ing. In the range of 5 < w < 8, the neutral curve is actually deformed somewhat,
but on the basis of insignificant variation of the curve j, = &, (@) , this deforma-
tion is found to be negligibly small and in no way is felt in the magnitude of the
critical Reynolds number. Calculations with respect to investigating the behavior
of the neutral curve in the indicated three intervals were performed for velocity
profiles with A = -2, 0, 2 (A is the Pohlhausen parameter when using a sixth-degree
polynomial for approximation of the velocity distribution in the boundary layer).

It must be noted that the formula for the critical Reynolds number (I.115) differs
from the corresponding Lin formula [12], [67]. This difference is explained by the
approximate nature of the methods of solving the problem of hydrodynamic stability
of the laminar form of flow, on the basis of which various authors can use a differ-
ent degree of approximation in their constructions. In particular, Lin [67] used
the approximate equality o = ulc for determination of the parameter o at the same
time as the value of o was detérmined from the expression (I.111l) when deriving

the formula (I.115).

§ I.9. Construction of Asymptotic Branches of a Neutral Stability Curve

The behavior of the neutral stability curve for the boundary layer for different
Reynolds numbers was investigated in the papers by Tollmien [24], [96], Schlichting
{13}, Schlichting and Ulrich [15], -and Lin [67]. In this section a study is made of
the behavior of a neutral curve for large values of the Re number based on the
expressions obtained above.

Let us consider the intersection of the polar diagram (Figure I.15) with the positive
part of the x—-axis. At this point Fi = 0, and consequently, in its vicinity the
value of
. 2 = — ety
“x

differs insignificantly from zero. Considering the case of a velocity profile with-
out inflection points (A > 0), we arrive at the conclusion that in the vicinity of
the point where Fr = 0.56, w = 2.3, the value of ¢ + Q, Then in the expression

u, Cll’~u‘: u'-c

0 0

2, = —— +—="nc+ -—
u {

3
t, ) u

it is possible to neglect the second term, for ¢ In ¢ + O for ¢ - 0, and it is
possible to consider u(‘] = ul‘(. Thus,

U‘C
2 = — ] . )
p=— 1

- Considering the first equality of (I.106) and the approximate expression c = “(')'yk,’

we find —a+cu

F,=056=E iz —u Y
Clg
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It is impossible to neglect the third term in the formula for z_, for o can be quite
small. For the Blasius profile ué = 1,68, and the preceding equality gives the
expression

. 0,738c. (1.116)

From the expressions w = y, (@ Reu), y, = = considering (I.116), we find
u

L

Re = 13,8-a7¢ or Re=46,2c". (1.117)

For Tollmien [24], the corresponding branch of the neutral stability curve is de—_a
scribed by the formula Re = 46°c™4. On transition to Re*, we obtain Re* = 15,75¢c
for the Blasius profile, Thus, the equation is obtained for the lower branch of
the neutral curve.

The equation of the upper branch of the neutral stability curve is obtained from
investigation of - equation (I.99) in the vicinity of the origin of the coordinates
of a plane [Er’ Ei]' Using (1.78), let us calculate the expression

L) ! N
— o e 7
Powa@ B i) | g ueke

For large values of Re, we find

Foogif e b M

’ Y Ve Re

For the Blasius profile u; = —18.4y§ = —6.55c2. Hence, considering smallness of c,

it is possible to calculate E, = 2.6°c-a2. For large Reynolds numbers it is possible
to set Fr = 0, which, using tﬁe equality Er = Fr’ permits establishment of the re-

lation of the parameters o and c.

- u-|~u’-c .
Er '—=-———'——:o =0| o == 1y C.
C.tty

In the case of the Blasius profile o = 1.68. Considering the expreasion Fi = Ei’
let us establish the relation Re = Re(d):

188 o6.c.al-

cV2acRe—2'6 c-a?; ) (1.118)

Re = 2,8a7'% Re = 0,0156c™", |
According to Tollmien's calculations, the upper branch of the neutral stability
curve is described by the equation Re = 0.0181c™ ", The neutral stability curve
for the Blasius profile, the asymptotic branches of which are constructed by for-

mulas (I.117) and (I.118), is shown in Figure I1.20. It is more convenient to use
the following relations for the calculations:
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for the lower branch of the curve
3 b *.
lg Re* = Igl3.8——5lg6—.—4 lga*;

for the upper branch of the curve

. . ) »
lgRe* = 1g2,8 — 11 lg s — 101ga”.

O
\

N~
\
2 2 4 S [} 7 8 g 0
Lgpet

Figure I.20. Asymptotic branches of the neutral
stability curve.

Let us construct the formulas for the asymptotic branches of a neutral curve of
arbitrary velocity profile in a laminar boundary layer analogously., For the lower
branch of the neutral curve let us conaider the vicinity of the intersection point
of the pclar diagram with the real axis where #; =0, &, = 2294, w =23, On the
basis of formula (I.111) we have:

u",.c 1
Q== . 5 —
T—c)? el : (1.119)
|,3+u—‘,’ ¢ u‘f,‘ Line
U uy
Using the smallness of c, we shall consider lhy, A uxl). Yx = —f— Then
0
II'C
o = co - .
u \
23— —gInc
4y
3 28.u
Re = (2._@) ! =g L
Yx a-u,

As a result, the following formulas are obtained for calculating the lower branch
of the neutral stability curve for small c:
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[

cu
a:—Q—‘a—. Re—

8-u{,

g

The upper branch of the neutral curve corresponds to the vicinity of the null point
of the polar diagram. At this point F(w) = 0; therefore «, (w) = 1. The parameter o
will be defined by a formula analogous to (I.119),

e 1

B TP e &~ uye.
Yoottt (1.120)
u\_ ll':

For establishment of the relation Re = Re(c) in the vicinity of the origin of the
coordinates we shall use the equality Ei = F

i
1 X
‘ B 2 (1.121)
I‘,T" ] 2y 3 u:,2 eV 2ac Re ‘
(1) 2,) b atuyee -5

K

Considering that c << 1, yk-u(') = ¢, ul‘L = ua and using (1,120), we find

Re=gm (1.122)

i It is possible to obtain formula (I.118) directly from (I1,122). Considering expres—
: : sion (I.121), it is possible to arrive at the conclusion that in the presence of an
inflection point in the velocity profile (u; = 0) the left side can approach zero
not only for ¢ + 0, but also for ¢ + e wzgch,corresponds to yg such that u"(yH) =

0. Therefore for observation of the equality (I.121) when Re + «, the upper branch
| of the neutral curve can approach o # 0. This fact indicates the presence of non-
viscous instability of the velocity profile with an inflection point [4].

Knowing the position of this point for the velocity profile with an inflection point

! (A <0), that is, the value of y., it is possible to find c¢; and, using (1.120),

| to calculate the value of o wh¥ch is approached by the upper branch of the neutral
stability curve for Re + «

upeepy
- O = ————
==
Proceeding to a*, we obtain
. “;)‘Cn 8
= LA

n=t—em 8"
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§ 1.10. Experimental Confirmation of the Basic Conclusjons of Stability Theory

The study of the stability of a laminar boundary layer has developed historically
so that the first results were obtained in the theoretical studies by Tollmien and
Schlichting. It was only after 13 years that Schubauer and Skramsted, creating a
flow with a low degree of turbulence (0.02%Z), confirmed all the basic conclusions
of the theoretical research of [4], [11], [16] and [12] well.

Schubauer and Skramsted performed experiments on a plate. Oscillations of different
frequency were created in a boundary layer using a metal plate and electromagnets.
Observing the development of these oscillations, it was possible to determine under
what conditions the oscillations do not damp and do not build. The corresponding
dimensionless frequency of neutral oscillations defined the point in the plane [Re%,
Brv/UZ], where Bt = a'c'UOIG. It is also possible to reconstruct the theoretical

curve Re* = Re*, (a*) in the plane [Re*, 8§ v/UZ], for each point (0*, Re*) of the
indicated curve corresponds to a defined vilue of c (Figure I1.19).

A comparison of the theoretical calculations with the experimental uata of Schubauer
and Skramsted is shown in Figure I.21. Schubauer and Skr :msted made their measure-
ments in the boundary layer using a thermoanemometric device.

Recently Burns, Childs, Nicol and Ross [97] performed analogous studies in the boun-
dary layer. However, for measurements cf the velocity pulsations they used a light

plate which underwent oscillatory movements under the effect of the transverse com-

ponent of the pulsation velocity in the boundary layer. The plate oscillations were
recorded using a reflected beam. Experimental points are shown on Figure I.21.

Stability theory also found qualitative confirmation in the experimental paper by !
Berg [98]. Using smoke plumes, Berg observed oscillations of a wing in the boun- 1
dary layer (NACA-0012). A display was obtained on a stroboscope. The oscillation

source was a loud speaker generating sound of aifferent frequency. The oscillations

were observed near the wing surface in the region of positive pressure gradients.

In the three mentionod evperimental papers studies were performed in air flows.
Analogous experiments were set up in water by Wortmann [26], who used the telluric
method for visual representation of the flow and Hama [99]. In both cases the
oscillations in the boundary layer were created using a vibrating strip by the
scheme first used by Schubauer and Skramstad.

The results of Wortmann and Hama, which agreed well with the theoretical results and
the data of other authors are presented in Figure I.21.

Investigation of the expression for the amplitude of the disturbing motion current
function (8 I.6 and § I.7) indicates that as a result of the pregence of a singula-
rity at the point y = Vi for y > Y the disturbing motion is described by a for-
mula of the tyne

[Fi(9) + Fa(y) In(y — y, )| efs ts—et),

and for y < Vi the corresronding expression must have the following structure:
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Figure I.21. Comparison of the calculated neutral stability curves
for the Blasius profile with experimental data. 1 — calculation
by the proposed formulas; 2 «— Schlichting calculation; 3 — Lin
calculation; 4 -~ Zaat calculation; 5 —- Schubauer and Skramstad
experiment; 6 - Burns, Childs, Nicol and Ross experiment; 7 —
Hama experiment; 8 -- Wortmann experiment.

~N

0 7

(Fi() + Fy(y) In| g — yx | — in- Py (y)] ele -—ch),

Thus, for transition through a critical layer, a phase discontinuity arises in the
oscillations determining the disturbing motion, This conclusion was obtained
theoretically by Tollmien. The experiments of Schubauer and Skramstad confirmed

it brilliantly. They were also able to obtain surprising comparison of the amplitude
distribution of the oscillations across the boundary layer with the Schlichting
calculations [90],

It is also necessary to point out the recently published results of the experimental
studies of Schilz [27] which agreed satisfactorily with thetheoretical calculations
of the neutral stability curve. Using thermoanemometers, Schilz studied the be-
havior of small disturbances introduced into the boundary layer of a plate, a
surface over which flow was taking place vibrating by a known law.

In conclusion of this section, let us present a statement by one of the founders
of hydrodynamic stability theory, H, Schlichting [4]: "“Experimental studies have
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so brilliantly confirmed stability theory that it must he considered a fully checked-
out component part of hydroaeromechanics."

§ 1.11. Application of Stability Theory Results in Calculations of the Length of a
Laminar Segment of a Boundary Layer

By the length of the laminar segment we mean the distance between the initial (fron-
tal) point of the body over which the flow is taking place and the loss of stabiliry
print of the laminar boundary layer. We exclude the transition zone (see § I.1) from
the investigation, for its extent depends on several factors [4], the most important
of which are the degree of turbulence of the external flow, the external pressure
gradient, and surface roughness.

Failure to consider the transition zone in the boundary layer leads to underestima-—
tion of the length of the laminar segment, which goes "into reserve" for the calcu-
lations connected with laminarization of the boundary layer. For practical calcula-
tions of the loss of stability point of a laminar boundary layer on bodies with a
pressure gradient along the surface, it is necessary to have the function Re* =
Regr(l). Instead of the Pohlhausen form parameter it is possible to use anycother
parameter reflecting the relation between the pressure forces and frictional forces
in the boundary layer. Here it is necessary to consider that the familiss of pro-
files constructed by different methods using the game parameter A =U"§4/y can
differ from each other on the basis of the limited nature of the single-parametric
method of approximating velocity profiles in the boundary layer. As an example it
is possible to present a comparison of the family of profiles constructed by the
Pohlhausen method with the application of a fourth-degree polynomial [13] and the
analogous family in the case of using a sixth-degree polynomial [15].

For the possibility of determining how the form of the approximation of the velocity
profiles in the laminar boundary layer influences the critical Reynolds number, cal-
culations were made by the scheme in § 1.8 of the functions Re* = Re% (A) based on

the family of Pohlhausen profiles (sixth degree polynomial), thé famii§ of Howart

profiles and the family of Basin profiles.

In the first case the velocity distribution across the boundary layer is expressed
by the formula
1 = Fq(y) 4 AGo (),
0<y<l,

- where the functions Fo(y) = 2y —5y* 4 6y° — 24",

X 2 1. 3
Goly) = 5y — 54 + ¥ — v+ 5v"

together with their first and second derivatives are presented in Table I.3 taken
from reference [15]. The family of Howart profiles is determined by the following
dependence of the velocity at the boundary of the boundary layer on the longitudinal
coordinate U9x) = U,(1 - r), where U, = U(0); r = —(x/Uo)(dU/dQ) (x is_a dimensional
variable). If r <0, then the velocgty increases with an increase in x; if r > 0,
the velocity decreases with an increase in x. The velocity distribution in the
boundary layer depends on the magnitude of the parameter r. The values of the
functions u(y), u'(y), u"(y) taken from reference [13] are presented in Table I.2.
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Table I.3. Functions F6 and G6

/% Fg Gg Fg Gg [ Gg

0 0 0 2 0,200 0 —1
0,05 0,1000 0,00876 1,997 0,150 | —0,165 | —0,966
0,10 0,1996 0,01509 1,983 0,104 | —0.486 | —0,900
0,15 0,2980 0,01918 1,946 0,061 | —0,975 | —0,793
. 0,20 0,3938 0,02130 1,884 0,025 | —1,536 | —0.662
0,25 0,4858 0,02175 1,793 —0,006 | —2,109 | —0,528
- 0,30 0,5726 0,02089 1,674 —0,028 | —2,646 | —0,388
0,35 0,6528 0,01905 1,528 | —0.,044 | —3,105 | —0,253
0,40 0,7252 0,01643 1,366 —0,054 | —3.456 | —0,126
0,45 0,7891 0,01380 1,185 —0,057 | —3,675 | —0,015
0,50 0,8438 0,01094 0,999 —0,056 | —3,750 | —0,067
0,60 0,9253 0,00584 0,634 —0,044 | —3,456 0,170
0,70 0,9685 0,00232 0,326 —0,026 | —2,646 0,181
- 0,80 0,9938 0,00056 0,116 —0,010 | —1,536 0,126
0,90 0,5995 0,00005 0,047 —0,002 | —0,486 0,044

1,00 1,0000 0 0 0 0 0

The stability calculations for the Howart profiles were performed as a function of
the parameter r. Recalculation for the Pohlhausen parameter (A,) was made using
the functional relation r = r()\l‘) [13] and the approximate relation AG = 1.152}\4

[15]. The values of r and the values of A, corresponding to them for which the
stability was calculated appear in Table I.4.

! The family of Basin profiles is defined by the following velocity distribution
i across the boundary layer [93]:

w= [|.+_ M;'j—:("‘sm%)] slnl,_,y—. (1.123)

The derivatives u' and u" are found by differentiation of (I.123) with respect to
the y-coordinate, Using (I.123), it is possible to obtain [93] the expressions for
the displacement thickness and pulse loss thickness

hM
—- = 0,363 — 0,028A;

|‘) E

- == — 0,00108A} — 0,00296A5 + 0,1366.

The stability calculations for the family of Basin profiles were performed for
different values of the parameter )\B. The relation between the parameters }‘6 and

A_ will be found from the condition of equality of the pulse loss thicknesses for
tﬁe corresponding values of A 6 and )‘B' Schlichting and Ulrich used the analogous

condition when establishing the relation A6 = )\60\4) [15]
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5% (0,1366 — 0,00296A5 — 0,0010813)° =

_ 22 (985 194 1 ,2\2 .
= 8 (oo — Tais —&m ™) - (1.124)

Multiplying both sides of the equality (I,124) by (dU/dx)(1/v), we find the relation:
Mg = Ag{hg) o
A5 (0,1366 — 0,00296A5 — 0,0010813)* =

(1.125)
= 15(0,109 — 0,00105% — 0,000155A)2.

The range of variation of AB’ A6 in practice was bounded by the limits 10 > XG’ AB >

-10. Therefore in equality (I.125) let us retain only the first—degfee terms with
respect to A6’ AB’ which leads to an approximate function AB = 0.64A6 or AG - 1.56AB.

Table I.4. Relation of the forw
parameters r and AG

r e
—0,100 3,88
—0,075 2,26
—0,050 1,64
—0,025 0,875

0 0

0,025 —1,04
0,050 —2,30
0.075 —3,86
0,100 —6,05

In order to simplify the calculations for each family of profiles graphs of the
variable were constructed

“K

M(C) == JeCeUp- ".3
L3

for different values of A6’ r, AB (Figure I1.22, I.23, I.24). This type of graph
greatly facilitates the graphical solution of equations of the type

ﬁ::—~nn4~£%,
LY
The critical Reynolds numbers were calculated by the scheme § I.8 using formulas
(I.113) and (I.115). On transition from Recr to Re:r, the following expressions
were used:
for the family of Pohlhausen profiles [15]
I D) My

5 -— »

>4
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Figure I.22. Graph of the function M(c) Figure 1,23, Graph of the function
for the family of Pohlhausen profiles. M(c) for the family of Howarth profiles.
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Figure I1.24. Graph of the function M(c) for the
family of Basin profiles.

for the family of Howarth profiles[13]
X =034,
for the family of Basin profiles [93]
& = 0,363 — 0,028

The functions Rezr = Re:r (1) constructed on the basis of the investigated three-
families of velocity profiles in a laminar boundary layer are presented in Figure
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Lgke,:p
49 Tl 3=
Tt
<7 n
30—
= 20
10
-y -2 0 2 4 '3

A

Figure I.25. Curves for Re:r(AG) considering recalculation for the

Pohlhausen parameter. I — family of Pohlhausen profiles; II —
family of Howarthprofiles; III — family of Basin profiles.

1.25. Here the parameters r and Ap were recalculated by the above-presented formulas
for the parameter A6' Agreement of the curves must be recognized as satisfactory.

If this recalculation is not made, the curves can differ significantly from each
other, which can be seen from a comparison of the curve for the Pohlhausen family
with the corresponding curve from the Basin family (Figure I.26). This fact indi-
cates the necessity for a careful approach to the problem of which method is used
to obtain the distribution of the parameter A = U'§%/v with respect to length of
the body when performing the stability calculations.

lgRep .
40} (a [}
1 1
7
7
J0 [//
- /
/
7120
L7
10
-4 -2 [/ 2 4 [3

A

Figure I.26. Curves of Re* (A) without recalculation for the Pohthausen
parameter. I —- family of“*Basin profile; IT -~ family of Pohlhausen
profile.

Key: a. cr
Figure 1.27 shows the curves for the critical Reynolds numbers as a function of
the parameter A. calculated by various authors: Schlichting and Ulrich [15],
Pretsch [14], F?nston [94], Zaat [95], Soprunenko [114] and Tetervin [113]. For
comparison, the same graph shows the curve obtained by calculations by formulas

from § I.8 for the family of Pohlhausen profiles. The basis for the Schlichting
and Ulrich calculation, just as the Fington calculation using approximate Lin
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formulas, was the family of profiles defined by the sixth-degree Pohlhausen poly-
nomials. In the calculations Soprunenko used the Howarthprofiles. The basis for
the Pretsch and Tetervin calculations was the family of Hartree profiles with

power dependence of the velocity at the outer boundary of of the boundary layer on
the longitudinal coordinate. Zaat also selected a single-parametric family of
velocity profiles in the boundary layer for his calculations, but the parameter that
he used [95) differs from the Pohlhausen parameter. Comparison of the curves Re*_ =
Re* (\) indicates that the formulas obtained in § I.8 for calculations of the
critical Reynolds number give results that agree quite well with the data of other
authors.

Having the function Regr = Retr(A) available, by the known scheme of [4], [15], it

is possible to determine the position of the loss of stability point. Example cal-
culations appear in the following sections.

(a) L‘gﬁ;ﬂp ")

40 -
I L

I
1l

s 4L

2

<

£ .
i 20 . Key: a. lg Re _
17 xxxx -2
,,./ ooo -J
‘, 10 |
; -6 -4 -2 0 2 4 § 8 0
! 4
. Figure 1.27. Comparison of the curves Re*_ (A) obtained by different
: authors. 1 —- Schlichting curve; 1II -- Zaat curve; III —- Pretsch curve;
1V -- Finston curve; 1 -- proposed approximate formula; 2 —- Teterovih
calculation; 3 —- Soprunenko calculations [114].

§ 1.12. Calculations of Stability of a Laminar Boundary Layer with,Suction1

With relatively small removal of fluid from the wall, the stability of the laminar
boundary layer developed on it increases significantly [4], [17], [18]. During a
theoretical study of this phenomenon all of the researchers known to the authors of
this paper only considered the increase in fullness of the velocity profile in the
boundary layer with suction. The stability characteristics were calculated under
the assumption that the transverse velocities are absent in the bnundary layer.

This statement of the oroblem makes it possible to use formulas § I.7. I.8 to calcu-
late the critical Reynolds number and neutral curve of anv velocity profile obtained
during suction.

-

lThe study discuss:d in this section was perforred bv Yu. N. Alekseyev and A. I.
Kerotkin [115]
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A study of the stability of the laminar boundary layer in the presence of constant
transverse velocity in the wall region is presented below. The equation for the
current function of the disturbing motion of an incompressible fluid is written
[28] as follows:

day , W dAp , 0A0 ¢ 0 dAp  dp 2A® ~
TR ey Pt M Pkl il mr bt w TR AT X (1.126)

where 6 is the current function of the undisturbed motion;
® is the current function of the disturbing motion.
We shall consider that

0=0,(y) —v-x. (1.127)
The value of v = const is the transverse velocity component of the main flow in the
boundary layer. An example of a boundary layer with constant transverse velocity

is the asymptotic boundary layer with fluid suction at the lower boundary.

Substituting (I.127) in (1.126) and considering the usual (8§ I.4) expression for the
current function of the disturbing motion

{ (ax—~bt)

¢ == p(y)e .

we obtain the following equation with respect to the amplitude of the current func-
tion

(0 2) @~ a9) —up b (0" — @) =

— (" — 2" | dy),
u

where u(y) is the mean velocity distribution in the boundary layer.

Let us take the velocity at the boundary of the boundary layer as the characteristic
velocity U and the thickness of the boundary layer as the characteristic dimension
8, and let us rewrite the preceding equation in dimensionless form, retaining the
previous notation for the dimensionless variable U

C(u—c)(¢"—atp)—up =
i . v
w0 — 20% 4 atp)— (e — oy, (1.128)

The boundary conditions for equation (I.128) will be found from the following pre-

- requisites. On the wall for y = O the tangential component of the velocity of the
disturbing motion is absent on the basis of the adhesion condition. This leads to
expression (1.61). The presence of a constant transverse velocity of the main flow
for y = 0 theoretically permits the existence of a normal velocity component of the
disturbing motion at the wall v_(0) ¥ 0. However, the presence of transverse oscil-
lations under the main flow coniitions with a longitudinal velocity gradient for y > 0
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would have to unavoidably cause oscillations of the longitudinal component of the
velocity, that is, would contradict the condition v _(0) = 0. Therefore it is
necessary to consider the identity v_(0) ¥ 0, valid,” which gives condition (1.60).
At the boundary of the boundary laer for y = 1 let us take the condition of smooth-
ness cf the transition of the desired solution of equation (I.128) to the solution
for an ideal fluid. This condition is written as follows with accuracy to the first
derivative:

e(1) = go(1): @ (1) = qo(1),

where ¢_(y) is the solution to equation (I.128) written for the regiony > 1, where
u'=0,u-=1, (aRe)™L = 0, for the viscosity is not ccnsidered

ia(l — ) (go— «’po) + v (g5 — <o) = 0.
Denoting q)‘d - 0L2¢0 = ®(y), we arrive at the equation
poda(l —¢) o
i1} - — O == ()'
which has the solution

{(c=Na

Dy) - A,L’ v y.

where A, is an arbitrary constant, Thus, it is possible to define the function ¢0(y)
using the following differential equation

" " i(c--1) u,
fo—aq, -Ae v J’

the general solution of which has the form

A|u3 i(c—=a

Poly) = — Eroe—nre "’ ‘4 Auelv + Age—uy,

Since the parameters c, v and a > 0 are real values, and at a sufficiently large
distance from the surface there should be no disturbances ( 0(y)/y_m + Q0), Al = A2 =

N, for the first term of the general solution has an oscillatory, nondamping nature
with respect to the variable y, and the second term increases without limit with an
increase in y. Thus, the smooth transition conditions have the form

(1) = Age=4, ¢'(1) = —-aAe~".

On the basis of arbitrariness of the constant A, the two indicated equalities impose
only one condition (L.63) on the values of ¢(1) and ¢$*(1), which is obtained by find-
ing A3 from the first equality and substituting the value found in the second.

As a result, the boundary conditions of equation (I,128), which are a generalization
of the Orr-Sommerfeld equation to the investigated case, .are written in the form of the
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expressions (I.6Q), (I.61), (I.63) and (I.64), In the latter, it is necessary to
consider the value of [M| = € as small as one might like. Usually this restric—
tion is not required when investigating stability problems by the smail oscilla-—
tior method.

Let us note that the relative magnitude of the transverse velocity v_in the case of
boundary layer control using laminarization is on the order of (Re)"l, where Re =
US/v. Accordingly, as the first two solutions of equation (1.28) we take the
analogous solutions of the Orr-Sommerfeld equation (I.72), (I.73), which are found
under the assumption of smallness of the right-hand side of the equation as a
function of viscosity.

In order to determine the remaining two solutions of equation (1.128) let us make
the substitution (I.74), which converts (I.128) to the following expression:

v Re

(u—c)(p' + pt—a®) —u" + e (0" + 3pp” - p* —ap) =

[p' -+ 6p" + 3p"* + 4pp” + p” —
— 202 (p’ -+ p) + ). (1.129)

T a Re

In turn, finding the solution of equation (I,129) in the form of the series (I.76)
and limiting ourselves to the first two terms, which gives an error on the order of
(aRe)'l/Z, we find (see § I.6):

M(y) = = Vi(u—rc);

P vke
Po 2

Py) = — .

K3 v
Ps(y) = (1~ ¢) ¥ exp (— ViaRe(n—g)dy 4- LRe L.
a‘ (n—c)dy Y0 (I.130)

5
T

P (y)=(u—c)

Y .
I Y E— URe
exp {é. ViaRe(u —c)dy |- 5 y}. (1.131)

When removing fluid the value of v < Q, Let us consider the real part of the expres-
sion in the braces in the right-hand side of equality (I.,131) for y + «

y 1
‘j V iaRe(u—c)dy + v;Qe y} = {bf ViaRe(u—c)dy +

’_ill/aRe(l 9 ( I)FVaRe(I lH_uRe l ,
Yy o

’

for u(y) =1 for y > 1.

The value of v is on the order of 1/Re; therefore the product vRe/2 is on the order
of 1 (for the asymptotic velocity profile vRe/2 = 2,3). The entire solution is
constructed under the assumption oRe >> 1. The relative propagation rate of the
disturbances c¢ is always appreciably less than one. Thus, the real part of the
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exponent in the solution of (I.131) for y + « is positive and, consequently, ¢
does not satisfy the boundary condition (I.64). Therefore in the gemeral solu-
tion of equat on (I,128)

4
Q) = ,}_{ e (y)

the constant c4 = 0.

The formula (I.130) shows that

Re
P (y)=Pu(m)e 2 °, (1.132)

where ¢30(y) is the corresponding solution for the Orr-Sommerfeld equation.

In order to determine the arbitrary constants c 1 © from the uniform boundary
conditions (I.60), (I.61), (I.64), the characteristic equation arises which for
neutral disturbances relates the parameters of the disturbing motion o, c to the
Reynolds number and the average motion characteristics. 1In the discussed case it
has the form (8 I.7)

1 @a(0) 1Y
I 1\ 2 =1-
[l 'oYx q)é(()) ] btz

(1.133)
where the real and imaginary parts of the complex variable z are calculated by the

formulas (I.104), (I.105). Considering (I.132), let us transform the left-hand side
of (1.133), denoting it by G(w),

3 0 -1
o(w)={1_7‘;. %) UReJ -
Iy | -1 | — F (w) mw?
Ll e CLOA ] = T=F@) 0+ )

(1 — Fw®m) (1 —F,—mwaF,) + mwF? (4 -+ mw®)
(1 -—F,—mwaF,)2+Fl2-(I -l-mw:‘)‘z F

+i o
(V= F, —me®F Y 4 FI (1 + mu®)?’

where F(w) = Inr(w) + 1Fi(w) is the Tietjens function (see § I.7),

u"

W == yK(Re uu,‘)va, m= ) .
2y‘au‘

Thus, it is possible to propose the following procedure for calculating the neutral
stability curve.

1. The universal (independent of the velocity profile) functions G (w, m), G (w, m)
are constructed for a series of values.
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2. Being given the value of Gi’ let us determine the values of Wi W, for defined
m by the graph.Gi(w, m), and also, using equality Gi = zi(c), let us determine the
value of c. The nature of the function g, (w) is such that in the general case one
value of the function corresponds to two values of the argument.

3. By the value of ¢ found, let us determine Yo ui, uﬂ, for the velocity profile
is known. '

4, For the found values of Wi, W, and selected m let us calculate or define Gr

Gr2 by the graph.

5. Using equality Gr =1+ z., we find al, Q

1!

9t
wi |
6. By the formula Re = ( ) —  we calculate Re., Re

o/ wu A A
7. Let us determine the values of the relative ventilation v = 2y§guﬂg, which cor-
respond to the obtained points on the neutral curve.

It is possible to use the indicated scheme without alteration to find the critical
Reynolds number directly if all the calculations are performed for a point on the
curves Gi = Gi(w, m), where Gi = Gy .

The numerical calculations were performed for the family of Wuat profiles

wo D) () b et () — uy ()l
where u,(y) is the velocity distribution in the Blasius profile;
u*(y) is the velocity distribution in the asymptotic velocity profile;
£ is the parameter of the family which varied from O to 1. ’

The critical Reynolds number Recr as a function of the parameters m and £ is pre-
sented in Figure I.28. The dependence of Recr on the parameter £ and the relative
transverse velocity in the boundary layer is shown in Figures I,29, I.30, From an
investigation of this function it is possible to draw the conclusion of the exist-—
ence of a relative velocity vy for each velocity profile such that for a suction
velocity greater than v, the gaminar boundary layer retains stability for all Rey-
nolds numbers. The graphs of the function vg = v,(L) and the corresponding function
Reo = Reo(l) are presented in Figures I.31, 1.32, For suction velocities less than

V., there are two critical Reynolds numbers — the upper Re, and lower Re_. The flow
in the boundary layer is stable if its Reynolds number is less than Re_ or greater
than Re+. If Re+ > Re > Re_, the flow is unstable.

For more complete explanation of the indicated fact, neutral stability curves were
constructed for the velocity profile with the parameter £ = 0.2. Each curve in
Figure 1.33 corresponds to a defined value of the parameter m., If we calculate the
value of relative suction velocity v at each point of the neutral curves and join
the points with v = corst, then closed regions are obtained which are shown in
Figure I.33 by the dotted line. Inside these regions the flow is unstable, and

8a
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Figure I1.28. Critical Reynolds number as a function
of the parameters m and %. Key: a. cr

outside them it is stable, For a defined suction velocity (v,), the instability
region degenerates to a point. Thus, for distributed suction, for purposes of
laminarization it is meaningful to increase the relative suction velocity only to a
defined amount corresponding to disappearance of the instability region, The pre-
sented calculation data allow estimation of the indicated velocity for velocity
profiles from the Blasius profile to the asymptotic profile.

§ I.13. Stability of the Asymptotic Velocity Profile

The study of the stability of an asymptotic velocity profile based on an infinite
plate with uniform and constant section with respect to the plate length plays a
special role in studies of the stability of a laminar boundary layer with suction.
The asymptotic profile has the greatest fullness of the velocity diagram, and there-
fore it has the greatest stability by comparison with all velocity profiles formed
on the plate with constant and uniform suction. The critical Reynolds number was
calculated for asymptotic velocity profile in references [17], [18]. For the
critical Reynolds number Pretsch obtained a value of Re* = 5.,52°10%; Bussman and
Munz found Rezr = 7-104, cer

Since in the calculations of the stability of laminar boundary layers with suction
these figures (more frequently a value of Re* = 7:10%4) are used to estimate the
required suction intensity and the calculatiSfis by the mentioned authors were
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Figure 1.29. Critical Reynolds number as afunction of the parameter £
and relative transverse velocity in the boundary layer (-0.1 < £ <0.1).
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Figure I.30. Critical Reynolds number as a function of the parameter
£ and relative transverse velocity in the boundary layer (1 < £ < 0,2).

Key: a. cr
based on the Tollmien-Schlichting graphoanalytical scheme (see § L,7), it appears

expedient to perform analogous calculations beginning with the scheme based on the
ideas of Lin (see § I.7), which does not require approximation of the velocity
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Figure I.31, Extremal suction velocity as a function
of the parameter £,
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Figure I1.32. Extremal Reynolds number as a function
of the parameter £.

profile by polynomials or the application of the graphical method of solving
the characteristic equation.
Using the formula obtained in § 1.8

33uy (1 — ) (1,5 -+ 0,185 Inc)

Re“l‘ = P ’

(I.134)
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Figure I.33. Neutral stability curves considering
the transverse velocity of the main flow.

let us determine the critical Reynolds number for the asymptotic profile,

The velocity profile of an asymptotic boundary layer is defined [16] by the expres-
sion

u(y) = l_.e—V- =]—eV 7, (1.135)

where y = §-y, v < Q.

On the basis of (I.135) let us calculate u('), ull, ui entering into the equation (I.113),

] from which the parameter c is found
, 3 vb
u, = — LQT y'f’
= : v
)
“;. g (u_j)’e"T "K.
- ll;,::ll‘(o):—.ﬁ.

v
In the given case the equation (I.113) is written as follows:

Lby _2_‘iy
0,58=n(|——e” ")e v oK.

vd
Let us solve it with respect to Vi Let us introduce the notation { =¢*
Then, we find

Vi
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0,58t m(l —§), £ ¢ 541§ —5,41=0,
0 = —2,705+ 3,57, § = 0,865.

The negative value of £ is meaningless. Thus,
vd

ev ¥ = 0,865,
Yo = ':3 In 0,865,
¢=1—0,865=0,135.

Defining c, let us calculate the value of the critical Reynolds number, considering
(I.134) and also the expression

valid for the asymptotic velocity profile [16],

33(1 —¢)* (1,54 0,1851n¢)
3

. 5*
Rexp = 3 Reup = z

= 8,45-10%

The above~presented results were obtained without considering the influence of the
transverse velocity component of the main flow on the stability of the asymptotic
velocity profile. In the preceding § I.12, this calculation was performed, but the
magnitude of the relative pumping velocity was in no way connected with the velo-
city profile characteristics in the boundary layer. This statement of the problem
is valid for the accelerating segment of the boundary layer (L < 1). In the case of
an asymptotic velocity profile when the profile characteristics are rigidly connec-

| ted with the suction belocity, consideration of the influence of the transverse

: component of the velocity on the stability of the laminar form of flow requires

1 more precise definition. Let us perform this study, using the results of § I.12.

- Let us transform the left-hand side of the characteristic equation (I.99), consider—
‘ ing that for the asymptotic velocity profile

! [\}
U~ e vRe = -3 == — 4,6.

The ratio §/8*% was found from the condition

_s
l—u(l)=e % =200l

Considering equality (I.132), we have

e 1 30 (0) S
) U ) SR8 Yo gy (0)
w2 a0 0)

23
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In the right-hand side of (I.99) we set ¢ = y,u!, which 18 valid for the asymptotic

velocity profile for the value of ¢ in this case does not exceed 0,14, Then expres-
sion (I.99) assumes the form:
_ _l_ {0 (0) 2
Yx ll::m(()) || “—2:3.’/&')3
or
F )+ iF(w)= I, (a, ¢) 4 iE; (u, ¢), (1.136)

o4
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7 o7 027 E] 24 95 \ 06
Re

Figure I.34. Solution of the characteristic
equation considering the transverse flow velocity.

wvhere F(w) = Fr(w) + iFi(w) is the Tietjens function (see § I.7),

(ZA-2)(1--230,) 1 ¢,
[12,(1-- 230, )7 1 (1 —239,)2,

E, (a,¢) =

>, ') == 4
A (e rper Y gy v

are determined by formulas (I.104),

’

w= yk(aRe ui)l/3 the values of z, and zy

(I.105).

The complex equation (I.136) is solved by the Tollmien-Schlichting graphoanalytical
method (§ I.7). The graphical solution is presented in Figure I.34. For comparison
of Figure I.35 shows the analogous solution for the asymptotic velocity profile in

the case where the transverse component of the main flow velocity is not considered,
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Figure I.35. Solution of the characteristic equation
withou' considering the transverse flow velocity.

The calculations are performed by the sam formulas except the difference l--2,3yk is
replaced by one, which is obvious from derivation of the final expressions. For

the two indicated cases of calculating th- stability of an asymptotic velocity
profile neutral curves are constructed in Figure I.36. From an investigation of them
it follows that consideration of the transverse component of the main flow velocity
leads to an increase in the critical Reynclds number of the asymptotic boundary
layer {curve I is constructed considering the transverse velocity, Re* = 9.7-10%,
cupve II is constructed without considering the transverse velocity, ClRex r=7.9°
10%). Comparison of the values of the critical Reynolds number is 8.45-10% and
7.9-10%4 permits estimation of the difference in the analytical and graphical methods
of solving the stability problem in the case of an asymptotic velocity profile.

43
—_—

I I 4 N\
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R\

-/
010 +— \\\\

o, ] 55 tyhe’
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N

Figure 1.36. WNeutral stability curves for the asymptotic velocity
profile. I — considering the transverse flow velocity; II —
without considering the transverse flow velocity,
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The cause of the differeace is that {iu.. -~ 0.58 does not exactly correspond to the
minimum Reynolds number on the neutral stability curve (see § I.7).
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CHAPTER II. INFLU=NCE OF SURFACE FLEXIBILITY OF A BODY OVER WHICH FLOW IS TAKING
PLACE ON LAMINAR BOUNDARY LAYER STABILITY o

§ II.1. Brief Survey of Studies of the Influence of Surface Flexibility - on the Drag of
Bodies Moving in a Fluid

The idea of using a flexible surface for boundary layer control obviously was a con-
sequence of obgervations of the motion of fish and marine animals. The opinion
exists that marine animals, in particular, dolphins, have accomodations still unknown
to man which permit them to move in the water at speeds greatly exceeding the maximum
speeds calculated on the basis of estiwmating their power. Thus, it has been con-

= firmed that the drag of a dolphin's body is less than that of the corresponding
solid model.

It is possible to determine the hydrodynamic drag of moving fish and marine animals
only indirectly, determining their power developed to. sustain given speed.
Accordingly, the question arises of a reliable method of determining the power and
speed of animate moving objects. An analysis of the known data on hydrodynamic re-
search performed with dolphins appears in the paper by Focke [23] written with the
participation of H. Schlichting. The corresponding bibliography is presented in
that paper.

Focke notes that the speed of dolphins has been determined by many observers both on
shore and from a moving vessel. However, in none of the described cases are data
presented on the equipment by which the observations were made so that the accuracy
of the measurements is unknown. This fact appears to be significant, for in order
to develop speeds of 9 and 11 m/sec, powers differing by approximately a factor of

2 are required. On observation from a moving vessel it is necessary to consider that
dolphins can use the energy of the system of waves occurring near a ship in their
movement (a method of riding the waves known in Australia and Polynesia), and they
can also use the favorable pressure gradient in the vicinity of the bow. Focke
performed calculations for a vessel 30 meters long and 6 meters wide moving at a
speed of 10 m/sec. It turned out that in the vicinity of the stem a dolphin 2.75
meters long experiences a propelling force approximately equal to 140 kg at the

same time as the drag of his body is about 15 kg at this speed. Analyzing the most
reliable sources, Focke arrives at the conclusion that a dolphin can develop a speed
of up to 10 m/sec.

The power of dolphins can theoretically be determined by several methods. The
majority of researchers, including Focke, consider it posaible to take a specific
power of dolphins (power per kg of musculature) approximately the same as for' man
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and other mammals, that is, about 5 kg-m/sec, Some researchers have performed
special experiments to determine the power of dolphins. The American scientist
Hero observed a dolphin weighing 180 kg jumping. In 0.6-0.7 seconds this dolphin
developed a speed permitting him to jump 2.1 meters out of the water (his speed

- leaving the water was about 125 knots). Calculations show that his specific
power was in this case 3.5 kg-m/sec. In the opinion of biologists, the most exact
method of finding power is connected with measuring the consumed oxygen, but as.
applied to such relatively large subjects as dolphins, this procedure runs into
technical difficulties.

Investigation of the available data at the present time does not permit definite
conclusions to be drawn that the drag of the dolphin's body is appreciably less than
the drag of the corresponding rigid models. However, it is necessary to mention

the experimental studies of Kramer [1]-[3], which were an impetus to the development
of the discussed method of boundary layer control.

In his first paper [1], M. O. Kramer describes experiments with a rotating cylinder
(inside diameter 50.8 cm, height 25.4 cm), the inside walls of which, in contact
with the water poured into the cylinder; were covered with a damping layer. The
cylinder was rotated at a speed of up to 720 rpm. The given angular velocity was
sustained for 10 minutes until the fluid in the cylinder began to turn as a solid
body. Then the cylinder stopped, and the rotational velocity of the fluid in the
cylinder was measured. The flow conditions in the cylinder were determined by the
variation of the rotational velocity of the fluid with time.

The critical Reynolds number (the diameter of the inside circle of the cylinder was
taken as the characteristic length, and the rotational velocity of the inside
circle of the cylinder before stopping was taken as the characteristic velocity),
using the best version of flexible covering was 2.4 times greater than the corre-
sponding critical Reynolds number in the case of a rigidsurface.

Obtaining hopeful results in the experiments with a cylinder, Kramer performed the
following series of tests under conditions closer to the actual nature of flow over
bodies [2]. A solid of revolution (L = 2.44 m, D = 6.35 cm) in the form of a cylinder with
adapter 47 cm long was towed behind a boat developing a speed up to 35 knots on

a thin (d = 2.34 mm) steel line 5.18 meters long. The forward half of the model,
covered with various coverings, was attached to a spring, the deformation of which as
recorded by strain gages, made it possible to determine the drag acting on the
tested surface. A comparison was made with a standard rigid surface.

The maximum gain in the drag was 59% for ReL = 1.5:107.

In reference [3] Kramer describes experiments which are a development of the pre-
ceding studies. Improvements pertained to the towboat (the boat speed could vary
up to 40 knots) and the design of the covering which had ribs as the elements
supporting the outer diaphragm instead of columns as in the preceding version.

Positive results were obtained from the experiments although the decrease in the
drag was somewhat less than in the case of the Ycolumn" covering.

Soon after publication of the experimental results of M, O, Kramexr, the paper by
Benjamin [4)] appeared in which the first effort was made to give a theoretical
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analysis of the stability conditions of the laminar boundary layer on 2 flexible
surface. Benjamin solved the problem for the following wall boundary conditions:

¢ (0) + ug-a =0, (11.1)
?(0) =c-q, (11.2)

where a is the complex amplitude of the harmonic oscillations of the wall surface.

The bcundary condition (II.2) corresponds to the assumption that the normal compon-
ent of the disturbance velocity at the wall is equal to the velocity of the move-
ment of the wall in the direction of the y-axis. The boundary condition (II.1) re-
lates the tangential velocity component of the disturbing motion to the deformation
of the wall and velocity distribution in the main flow.

For determination of the surface deformati .n the normal direction Benjamin uses
a formula obtained from the Navier-Stokes eyuations without considering the terms
that depend on the viscosity.

The indicated boundary conditions and adopted simplification when determining the
pressure on the wall permitted Benjamin to obtain a relatively simple form of the
basic characteristic equation of the problem - However, even in the case of
surface deformation' by a trip wire vibrating ir the resistant medium he was
unable to come up with a method of calculating the critical Reynolds
numbers for different characteristics of a flexible surface.

The article by Landahl [5] is a development of Benjamin's work. In this article the
author, using Benjamin's -“ssumption, takes the first steps to discover general laws
controlling the successful operation of flexible surface in the sense of laminariza-
tion.

Tha study by Becker [6], [7], where he investigates various conditions of supplying
energy to a fluctuating wall from the incompressible laminar layer side, is very
similar to the ideas ot Benjamin's work.

- R. Betchov demonstrated an original approach to the solution of the problem of lami-
rar boundary layer stability [8]. He divided the disturbances in a laminar bound-
ary layer into three parts: disturbances, the behavior of which is described by
the inviscid Orr-Sommerfeld equation, disturbances connected with the presence of
a "viscid" zone near the wall and disturbances determined by the effect of viscos-—
ity in the critical layer where the velocity in the boundary layer coincides with
the disturbance propagation rate.

. An equation equivalent to the characteristic equation was obtained from the expres-
sion v_(0) = 0. It is proposed that this equation be solved graphically, The
characferistic equation is generalized to the case of a surface that is compliant in
the normal direction.

The strictest statement of the problem of laminar boundary layer stability om a flex-
ible . surface appears in the paper by Boggs and Tokita [9]. Writing out the rela-
tions for this surface deformation as a function of normal and tangential stresses
on the wall, they thea use the incomplete characteristic equation and present their
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arguments without considering the conditions at the upper boundary of the boundary
layer. However, even this simplification and neglecting the influence of the tan-
gential deformation on stability did not offer them the possibility of indicating
a specific way to calculate the critical Reynolds number for various characteris-
tics of a fiexible covering.

A qualitative investigation of the behavior of a flexible surface under the effect
of a fluid flow over it appears in the papers by Nonweiler [10] and Benjamin [11],
[15].

A description of experiments in determining the influence of foam polyurethane
coverings on the position of the laminar-to-turbulent boundary layer transition
point on models of wings is given in the paper br Gsregory and Love [12].

The study of the stability cconditions of a Poseuille flow in the presence of flexible
boundaries made by Hains and Price [13], [16] is closely adjacent to the mentioned
papers. They represented a flexible gurface in the form of a compliant film
stretched with known tension, the magnitude of which varied in the calculationms.
During oscillations the film experienced drag proportional to the first power of the
velocity. The inertial forces connected with the mass of the film and the forces
proportional to the shift of the film in the noimal direction (Elexibility of the
base) were not taken into account. Calculations ¢f neutral curves for different
film tensions and drag coefficients were made on computers. The calculation re-
sults gave closed instability regions in some cases,

In connection with the discussed problem it is necessary to note the cycle of pa-
pers by Miles studying wind wave generation. The basic results of these papers with
the corresponding references can be found in the survey article [14].

§ II.2. Boundary Conditions for the Orr-Sommerfeld Equation in the Case of 2
Flexible Surface

The problem of stability of the laminar form of flow near a flexible surface differs
from the analogous problem for a rigid wall by the boundary condition for y = 0.

Whereas in the case of a rigid surface the velocity components of the disturbing mo-
tion at the wall are equal to zero, in the case of a flexible surface it is natural
to assume that on the basis of satisfaction of the adhesion condition, they are
equal to the corresponding velocity components of the wall surface points. Deforma-
tion of a flexible surface, in turn, is connected with tangential and normal stresses
on the surface of the body caused by velocity pulsations of the disturbing motion in
the flow. We shall consider only small deformations of the wall such that their in-
fluence on the basic velocity profile can be neglected.

Let us be given the following equations relating the surface stresses and strains
(17], [18] -

g wepet, (11.3)

Xoonmetee'™,

(11.4)

where k, m are constants that depend on the properties of the covering;
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p is the variable component of the pressure on the surface of the body;
_ i is the variable component of the tangential stress on the surface of the body;

_ 61, 62 are phase shifts between the oscillations of the stresses on the body surface

and the corresponding deformations.

A normal stress acting in a viscous fluid on an area perpendicular to the y-axis is
expressed (see § I.2) by the formula

do,

1f the wall does not deform in the tangential plane, then

dox
9 |j=o

aad, consequently, on the basis of the continuity equation which is assumed to te
valid to the fluid boundary,

0,

i

A
dy -

y=0

Therefore, by p we mean the static pressure p, including the minus sign in the phase
shift.

Pressure pulsations on the wall can be determined from the linearized Navier-Stokes
equations written for disturbing motion (1.28). :

Just as in the case of a rigid surface, let us gselect the following form of the cur-
rent function of disturbing motion :

@ = ¢ (y)exp i {ux— bi)],

= on the basis of which we shall define the values entering into the first equation
(1.28):

~ 0 _mo o o)
=y =@ (n)exp (i (ax — bi)l;

S~ 0F - = Y
vy - — {()_TT - —ifap(y)exp i {(ax — be)];
duy o=, = = =
— == — ibg'(#)exp i (ax — bD);

X

0. .o, o= L=
% = fugp’ (y)exp [i(ax — b)};
L)

Py == - -
{of‘— = —a*@' (y)exp i (ax — bt)};
vy
ay?

950,

(1I1.5)

= @"(yyexpli(ax — bI));

= Q" (y)expli(ax — bi)).

ay’
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Substituting (II.5) in the firat equatfon of (I.28)

—OL pexp li (ax— bf)] {ibg’ (y)— u-i-ag’ (y) -+

+ ' -iag (y) -+ V9™ () —a’y’ ().

. (11.6)
Let us integrate (IIL.6) with respect to X
b= £ expli (@i — D) [ve" @)+ ia (g —u——F ).
X @'(y) + i-au tv(y)] + Q) (1L.7)

The value of Q(;') can only be constant, for when determining the function QG) , the
following relation is obtained

B[ rexp litaF— b1 4 Q') =

w 1(y)exp li(ax —bt)] + Q (y) =

= fa(y) exp (i (ax —bI)),

where f! (y) is defined from (1I.7), and £ (y) is found from the second equation of
(1.28). Since 3p/3y 2 3p/d9y for all values of X, ¥, €

i.(J) [:(9) and Q'(y) = 0.

It is necessary to consider the approximate nature of the equalities of (I.28).
Considering the equality (II.7) for y + ®, we gee that QG) = o0.

Let us differentiate (II.3) with respect to time, substituting the value of p from
(1II.7) and the value of ;y from (II.5),

ya

iag(y) l.— p[vq) (1) + m(i—u ——) X

< @' (y) - dau’ <p(J)] e

At the wall when y = 0, the preceding equality gives the following boundary condi-
tion written in dimensionless form

ket | 2001 (o 4 ) @ (O 4 (O)rp(O)J-rp(O) (11.8)
where the parameter
A L
KR ' (11.9)

If the wall is unable to be deformed in the tangential plane, that is, w’ix(o) = Q,
then ¢'(0) = 0, and condition (I1.8) is simplified somewhat
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- 0 ,
‘fu ,‘;,} = @(0)le~"% — kcu’ (0)). (11.10)

K¢

For a rgid surface the ordinary boundary condition is obtained from (II.8) and
(1I.10) for k = O.

A tangential stress acting in a viscous fluid on an area normal to the y-axis is
expressed by the formula

c %y %
'c—p,,—-p.(a;. + a}.).

) 1f the wall is not deformed in the normal direction, then

LT =0
ox {0
consequently,
T
dy (11.11)

In order to obtain the second boundary condition on the wall for the function ¢ let
us substitute the value of T from (II.1l) and the expression leay from (II.5) in
(11.4): .

- N fi-}t&'(g)expli(a}'——b-l-) 4 04). (11.12)
Differentiating (II.12) with respect to time and considering that
o5 ~ 2 — = "
— = 0,(0) - @ (O)exp li (ax — bt)l,
we find A 5o :
'(0) - — ibmy-g" (0)e™. | (11.13)

Let us reduce the values entering into formula (II.13) to dimensionless form

“here l ] Re W (o)e ' (11'1")
— alU?

~ms
m-=m-=g=-. (11.15)

The boundary conditions on the outer boundary of the boundary layer will be taken in
the same form as in the case of a rigid surface, that is, we shall use the expressions

af (4 F (1) = 0, [ (W) |yre < M < 0.

In subsequent sections of this chapter two problems will be considered: the first,
on the stability of a laminar boundary layer om a gurface that is compliant in the
normal direction; the second, on the stability of a laminar boundery layer on a
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surface that is compliant in the tangential plane.

Let us write the boundary conditions for chese two cases, considering (11.10) and
(I1.14).

The boundary conditions of the first problem:
k »r
= e @ 0)+ 9 (0) (e~ % — Keu' (0)) == 0;
9'{0)=0; (11.16)

ap(l)+ @' (1) = 0;

‘?(.‘/)IH—'-<M<°O.
The boundary conditions of the second problem

¢ (0) == 0;

9 (0) |4 3:‘ P (0) et = g
ap(h)+ ¢'(1) = 0; (11.17)

1P lyre <M < 00,

The boundary conditions obtained on the wall are a consequence of the adopted re-
lation between the surface deformation and the corresponding stresses (II.3), (II.4)
which, in spite of its simplicity is very general, Thus, for example, relation
(I1.3) encompasses all coverings, the deformation of which is described by an equa-
tion of the type

( dy. Ay, oy 0yc . o"ye : ¢
L(”"’o‘:“' ox ot o’ . 'ox" P b

in which L is a linear combination of its arguments with conatant coefficients, p is
the pressure of the disturbing motion on the wall gurface, y_  is the surface coordi-
nate of the flexible covering. The same thing pertains also £o equality (II.4). As
usual in the method of small oscillations it is proposed that all the values con-
nected with disturbing motion vary according to a harmonic law

A(x, y, 1) = 1A, (4) +iA, (W) exp lia (x — ct)).
For example, if the surface motion is described by the equation

ot ) Py .
a, —JIL;C— Fdq '('g% + ayy, + “4"‘)}'-."‘_ =ply, 1)

em(x—ct), t*2n finding the forcedoscillation of the wall in the

where p(x, t) = Pq
form of Y. = yoem(x":t), we arrive at the expression
- (— a?c"a, — incay + 4y — a®ag) Yo' (x—ct) = ppis (5-ch)
or yC:erih , where kel = (uy — a’c'ay — iucay — ata,)™.
The values of a, (i = 1, 2, 3, 4) define the specific mass, drag, elasticity and

surface tension of the given covering.
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The dimensionless parameters k (II.9) and m (II.15) play the role of similarity
criteria characterizing tie properties of the covering. For the same mechanical
characteristics of the covering, its operating efficiency depends on the density of
the fluid flowing over the body, the square of the flow velocity at the boundary

of the boundary layer and the thickness of the boundary layer. It is necessary to
consider the significant increase in relative compliance of the covering with en
increase in velocity. Since the thickness of the laminar boundary layer is inverse-
ly proportional to U1/2, with an in:rease in velocity the compliance of the cover-
ing varies proportionally to U°/2, This fact makes it possible to hope for success
in using damping coverings for laminarization at high flow velocities over a flex- -
ible surface.

§ II.3. Method of Calculating the Stability Characteristics of a Laminar Boundary
Layer Developed at a Surface that is Compliant in the Normal Direction

Using boundary conditions (II.16), which are uniform with respect to the function ¢
and its derivatives, it is possible by the same method as in the case of a rigid
surface (§ I.7) to find the following characteristic equation of the problem:

-ty L(3

-lﬁa ‘{;:(U) +(e "‘f"o’)?u 0 " afe 'Q;‘(O) g (ﬂ.m' 'n{.'ll;)%(o) - I_;f‘c W: (0) o(e"o' -ncu:,)%(m
9,0 ¢ (0) 9,0 -0
@, (1) +ag, (0 () vyt 0

Let us expand the determinant ottained with respect to elements of the third column
¢ (0) xe 0

(7™ — Keuo) X2 : 3
0 930 iaRe ¢ 0)

=: [(c"ﬂh - xcu;,) ¢, {0) — iahf?c (p; (0)] [(p; ) +aq, (|)l _
. [(e""' — ""“[») ' (0) — m"——cﬁé tpf_: (0)] [lp; (1) 4 P, (L)l

1 (0) [ (1) + agy (D] — 930 [, (1) + ag, ()]

Substituting the values of the functions
@ (0)=—¢; @1 (0) =1 (0) = t; §i(0) = u —o'c;
91 (0) = 65 -+ o’us; ga(0) = 0; Ga(0) = —

. . ™ 2 . 1I.18
i G0 =0 gr(0)= - (I1-18)
b (0 g, (0
?%%n—iVMR&m ?;:=~AMRQ
3 3

calculated on the basis of the known expansiona of (8 1.6), considering smallness of
the ratio 1/oRe and also the condition u"*(0) = Q valid for a laminar boundary layer
at a wall, we arrive at the complex equality

43(0) ket NI

w0 T e Caag) | gy T (11.19)

where

104

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8

FOR OFYICIAL USE ONRY

z =2, iz
up ety WL
Z’ :~“"7+ u,s lnC *_Q(I—C)""
— L3 K -
. '8
3
2 = — RlgC —7~ -
] u:l

It is possible to solve equation (II.19) graphically as discussed in § 1.7, except
the values of E, E 1 must be determined from the following expressions instead of
formulas (I.106): s a4
_c 2,1z Zf

E (a, ¢, K 0)): — ———5
A . ) Yty (l—i»z,)2+z¥

et cos b, — Kctry )
1 Un | — 2cos 0, -xcuy et
Ea ¢ K 1) = ——- LI (I1.20)
ney  (Liz) g
Ket sin ),
- s 1 —2cus OI-M'II;, I

The values of z, and z i entering into (II,20) are calculated by the above—presented
formulas.

The difficulties in graphical solution of equation (I1.19) noted in § I.7, increase
significantly in the presence of additional parameters k, 0; reflecting the influence
of a flexible surface on the laminar boundary layer stability.

Accordingly, it appears very useful to point out a calculation method of determining
the critical Reynolds number for a laminar boundary layer developed on a flexible '
surface with known properties which, as before, is of interest to researchers
studying laminarization.

Let us discuss the method beginning with the basic Lin concepts [19] which he de-
veloped when studying laminar boundary layer stability on a rigid surface.

Hereafter we shall use the approximate equality
Co Yyl (11.21)

Let us rewrite (II.19) considering (11.21)

Fw) = 1§.z + A4 iB, : (11.22)

where the following notation has been introduced

Keug

(11.23)

A= s (cos 0 — KCitg);

1 — 2cos b)) -keuy - K°c"ug
Keuy,

= ; —sin 0,. .
B t = 2cos B, - neuy 4 wclug? ! (I1.24)

Then setting 1+ z = @, we arrive at two real equations on the basis of the complex
equation (II.19):
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‘DI = G,i »

D, =G, } (11.25)
The values entering into system (II.25), are defined by formulas
Sy we e (1I.26)
O, =1 ;+ 3 lnc'l'«T(T:Z)"l'
_ II.27
D; = — neug “’; ) ( )
- g
G~ I —F () + A : (11.28)
T U=F +AFF(B=F) °

Fi(w)—8 ' (11.29)

G, -

TR AT B=Fy

where F(w) = Fr(w) + iFi(w) is the Tietjens function (§ I.7).

The scheme for calculating the critical Reynolds number as a function of the parame-~
ter k for a given velocity profile in the boundary layer and for a given value of
the parameter 91 reduces to the following. :

1. Being given the numerical value of the derivative kc and knowing the values of
61 and u(') (the velocity profile is given), let us calculate A and B by formulas

(I1.23) and (II.24). Let us note that it is mpossible to give the value of k with-
out relating it to the value of ¢, for in this case the right-hand sides of equali-
ties (II.25) will be functions not only of w, but also the parameter c which excludes
the possibility of using the basic Lin concept (§ I.7).

2. For the values of A and B found, using Table I.1 and formula (11.29), let us
construct the graph Gy = Gi(w).

3. Let us determine Gy and the corresponding value of w by the graph of Gi =
G (w). max m
i

4. Solving the following equation graphically with respect to c

G 22— =X
U/nmx T ne “0 u'3 ’
X

which was obtained from the second equation of system (I1,25) and formulag (11.27),
let us determine the value of u and, consequently, the following parameters u;m,

Y Vi®
5. Let us determine Grm by formula (II.28) for a value of w = wn‘l.

6. Considering formula (II.26) and the first equation of gystem (II.25), we find
o corresponding to the previously defined value of <
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R 1
%m = TT—cp uy ueu, )
G —1 + —— 3 inc
K K

7. Let us define the critical Reynolds number by the formula

* Rey, = ( o )3. L.

nm .
y am uK"I

8. Let us calculate the value of the parameter k which corresponds to the value
found for the Reynolds number k = kc/cm.

Performing the indicated calculations for different values of the parameter kc for
a reinforced value of 8., it is possible to obtain the curve of Recr = Recr(k) for
a given velocity profile in a laminar boundary layer.

§ II.4. Calculations of the Critical Reynolds Number of a Laminar Boundary Layer
as a Function of the Characteristics of a Compliant Surface in the Normal Direction
and the Pohlhausen Form Parameter

The methods discussed in this section permit calculation of the loss of stability

point of a laminar boundary layer developed on an elastic surface with known charac-

teristics k and 6,. However, such calculations are very tedious. For significant

simplification of the process of finding the loss of stability point on elastic

surfaces the universal relations Re* = ReX (k, 6,) were constructed for different
cr cr 1

values of the parameter A.

As before, the nature of the following functions was studied:

Reyp = Regp (x, 8, = const),
Rex, = Rexp (8), & = const).
(a)

Key: a. cr

The calculations were performed on the basis of the grapho-analytical method (§ II.3)
for the following values of the parameters

k- 0,1; 360° >0, =0°,

8, == 0% —02<x<04.

The results of determining the critical Reynolda numbers for the Blasius profile
(see Table I.2) as a function of k and 01 are presented in Figures IIL,l and II.2.

lAll the caLculations in this chapter were performed by Z. N, Smirnmova and N. M.
Savina.
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Figure II.1. Critical Reynolds number Figure II.2. Critical Reynolds number
as a function of the parameter k; 61=0. as a function of the parameter 31; k=0.1.
Key: a. cr Key: a. cr " b. solid plate

The performed calculations indicate that the value of the critical Reynolds number
varies monotonically with variation of the parameter k and has an obvious peak on
variation of 6; within the interval 0° <93 < 360°, Moreover, in some range of
variation of 6; the critical Reynolds number on an elastic surface becomes less
than the value for a rigid wall.

This fact has exceptionally important significance, for it indicates the necessity
for careful selection of the coverings designed to damp pulsations in a lami-
nar boundary layer. It cannot be expected that the sotter the coating, the greater
the effect from using it. It can turn out to be the opposite if the damping proper-—
ties are improperly selected.

In connection with what has been discussed, all of the following calculations were
performed for a fixed value of 67 = 60°. The basis for the calculations was the
family of Pohlhausen profiles defined by a sixth-degree polynomial.

Figures II.3 and II.4 show the results of calculating a family of curves Re* = Regr
(A, k) for 61 = 60°. The rapid growth of the critical Reynolds number wit
variation of the parameter k in the interval 0 <k <1 attracts attention.

In addition to finding the critical Reynolds number which was determined by the
scheme in § II.3 directly without constructing a neutral curve, it is of defined
interest to consider the nature of variation of the wavelength of the disturbance

which, as before, causes instability, and its propagation rate as a function of the
characteristics of the elastic covering.

The corresponding graphs were constructed for three velocity profiles defined by
values of the parameter A = 2, 0; -2 (Figures II.5, 11.6).

From Figure II.5 it is obvious that with an increase in k the wavelength of a
dangerous disturbance increases sharply (A = 2m§/a), and its propagation ratz along
the x-axis drops sharply (Figure IT.6).
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Figure II.3. Critical Reynolds number Figure I1.4 Critical Reynolds number
as a function of the parameter k for as a function of the parameters k and
different values of the parameter A; As 61 = 60°.
8, = 60°
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Key: a. cr Key: a. cr

S 11.5. Method of Calculating the Stability Characteristics of a Laminar Boundary
Layer Developed on a Surface Compliant on the Tangential Direction

On the basis of the boundary conditions (11.17) which are uniform with respect to
the function ¢ and its derivatives, we obtain the characteristic equation

W; ) -F1 2 0% e ol 0y 41 8 o i, muc w0
e 91 G20 1Ty (0 € @y (0) + i g0y (0) €

v @ (0
. R =0
@y () Hupy (1) Qo)+ g o (1) %0(0) (11.30)

which relates the parameters of the boundary layer, the disturbances and the elastic

surface.

Let us transform equation (II.30)

[es0) 14 2 g3 ()™ |
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‘ ¢:1(0) - 9 (0) _
(Dt api(l) @1)+ apa(1)

.
i

910)+ i Toe 91 (0) €™ 92(0) + T gz (O)e™

P (1) + agi(1). g2(1) + age (1)

P (0) | ;mac g ‘P; (0)
———= =1 } l—R-—C' 1 ——
@, (0) ) ° 3 (0)
¢ (1) 4 ag, (1)
@ (1) -+ agy (1)
: . . @ (1) + ag ()
() 4 i mac © ew' RUOTIRT
[+ Re 1@ ]«p.(n+a«o,m
ac

i oen)

— 3(0) =

1 {0) ~¢,(0)

X

(I1.31)

— [(p,; 0) i

Substituting values of the functiona ¢, ¢2 and their derivatives at the wall
(I1.18) in the right-hand side of (1I.31), we arrive at the equation

¢4 (0) ma'/r¢’ls 4 (0 +-2
—— == | ] T
i (0) [ TR ) X

110
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8

FOR OFFICIAL USE ONLY

4 0)Haw )

. ¢y (1) +ag (1)
[1+ 2090 05— caty o] S2ULE SR 1 (11.32)
@ (D +ag (1) €

Sincem ~ 1, ¢ <1, a <1, and the number Re >> 1, in the sum u} + 1mac/Re(U"-caz)e192,

the second term can be neglected by comparison with u! in view of the fact that the
value of u(‘) varies within the limits of 0.8 < u(') < 3.2 within the most interesting

range of variation of the parameter A = (U‘Gzlv),(—6 <A <8).

Considering this fact, let us rewrite equality (11.32)

| S et

e K (11.33)

LI ) R SR

Yn q;'(()) ’ yxu‘; bz

1 { mac l

where . .
L e [ (1) 1 wey (0]
¢ () Fag ()

Then let us assume that the following inequality is valid:

mu”'c'/'

<\,

which defines the admissible values of the parameter

In this case, or the basis of (II.33) we: arrive at the expression

. s 0) 1— ma'/‘:c‘/- el (0, +%) __c¢ ) oz (11.34)
Uy () | Re'/s gy V27

Let us introduce the known notation (§ I.7)

— _l_ ._—q.i‘ ©) = F(w) == F, (w) '|"' lF, (l.‘)), W= Y (u;-a Re)ll'.
Yx (‘13(0) .

Then considering the assumption ¢ ~ yk*ua equality (I1I.34) is written as follows:

I:(w)[l—-ﬂ‘;f”&ei (o.+%:)} z
w's

“T¥z

Let us denote the product of the real parameters m, az, cz, Y by

M = mascty,. (11.35)
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Considering (I1.35) the preceding equality assumes the form

w'ls 1Fz°

: o n )
F(w)[l—— M “"'*T}] __z (11.36)
Let us transform equation (II.36) assuming for brevity the notation

Plo €)= P,{a ¢) + iPy(e, €)= 1 +2= 1424z

Mol o
where 1= F(w)[]—— Al (93 )] =D(w, M, 8,)=D, -+ iD,,
P!(ay C)"‘ | ll; + “: |"L + (l(l-—-c)z : (11'37)
P.’ (Cl, C) = -—:'(“;c_“;;-;
U. (11038)

x

D, (w, M, 0,)=1— F, (@) + F, (@) 5= cos (- 0,) —

- F,(w)w—“,’:Tsm (02 +5)-

- (11.39)
D;(w, M, 8,) = —F,(w) + F,(w)—u—?.—'/—.cos (0,-}- -’z'-) 4
+f,(w)% sin (93+%).
(11.40)

We obtain the complex equality P = 1/D which is equivalent to two real equalities

__Drw, M, 0y) I1.41
P(a, c)= --D3-+- D? H C )
o _D[(W. M, 02)
P(a, ¢)= _D';'-I~D? ’ (11.42)

Using formulas (I1.37)-(II1.42), it is possible to construct a neutral curve for any
velocity profile in the boundary layer for given parameters M and 6, and also to
find the critical Reynolds number without constructing the neutral stability curve.
Let us consider the procedure for finding the critical Reyholds number.

1. Being given values of M and 62, using Table I,1 and formulas (II.39), (I1.40),
let us construct the function

Dy (w, M. 1))

Gilw) === (11.43)

2. Let us define the maximum value of Qi and the corresponding value of w = w
max m
by this graph.
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3. Solving the following equation graphically

-

.ou
k
— Ul —5 == Dy max,
Uy

we determine the value of the parameter c and, consequently, the corresponding values
of Yys uﬁ, uﬁ, for the velocity profile in the boundary layer is given.

4, For the value of v found, using formulas (II.39), (II.40), we calculate

D, (e, M, 0:)
) O (w,, M, 0,) = W
5. Using equalities (1I.37) and (II.41), let us determine the value of the parame-
ter o considering the values found for c, uﬂ, u;,
- . “;r" ]
Uy == (i ——C)" *

ug o Cti
O (wm) — 1 + -—u? - o‘l’k Inc
k u

6. Let us define the critical Reynolds number by the formula

Reg, = ( _w@.')s 1

y*m am u; m
or, replacing the thickness of the boundary layer by the displacement thickness,

(7 )

7. Using formula (I1.35) let us calculate the value of the covering parameter m
which corresponds to the value found for the critical Reynolds number

M

2.2 .
amcm-‘/km

Performing the indicated calculations for different valuea of the parameter M for
reinforced 62, it is possible to obtain the function

de=Rdﬂm)
(a)

Key: a. cr
§ II.6. Calculations of the Critical Reynolds Number of a Boundary Layer as a

Function of the Characteristics of a Surface Compliant in the Tangential Plane and
the Pohlhausen Form Parameter

The corresponding calculations were performed for a plate in order to discover the
nature of the critical Reynolds number as a function of the parameters m and 6,.
The velocity profile in the boundary layer was determined in this case by a siith-
degree polynomial with the parameter A = 0.
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Using formulas (II.39), (II.40), (IL.43), the functions & = ¢.(w) were constructed
for M = 0.1, 0.25 and 0.5 for different values of the parameter 62 which varied
within the range from 0° to 360°.

On the basis of the indicated relations, for each combination of M and 6,, values of

q’imax and the corresponding values of v were found. The functions & = §f (62),
= n k = %

wo wm(ez) are presented in Figure II.7 for M = 0.25. The functions ReX Recr(ez)’

_ m = m(6,) for M = 0.1, 0.25 and 0.5 were constructed by the scheme described in the
- precedifig section. The corresponding curves for M = 0.25 are illustrated in Figure
II.8.
Beginning with these relations, graphs of the functions Rezr = Retr(ez) were con- .-

structed for consatnt values of the parameter m (Figure II.9).

B 2% tmar g
ENEEPZa W
25t06 144
% T~ w
r—-—‘- T n -1
30105 Ll .
) 100 200 Joo 6,

Figure 1I.7. Value of ¢ and w_ as a function
i max m
of the parameter 92; M=0.25; A = 0.

L3
Rexpg m

65 :
) A Rel,
500135 —-\~ / ’ "

N

100 200 200 8;

Figure II.8. Critical Reynolds number and m as a
function of the parameter 62; M= 0.25; A = Q.

)

!

Joor 2,5 —

0120
2 1/

Key: a. cr
Studying the behavior of the curves Re* = Re* (8,) for m = const, we arrive at the
conclusion that from the point of viewS5f incfgaaing laminar boundary layer stabil-

ity, a favorable phase shift between the tangentical stress and deformations of the
surface characterized by the parameter 62 will be found in the range of 0 < 62_5 20°.
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Figure II.9. Critical Reynolds number as a function
of the parameter 92; m=3; A=0.

Key: a. cr
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Figure 1I1.10. Critical Reynolds number as a function
of the parameters A and m; 62 = 0,

Accordingly, the curves Re* = Re:r(k, m) were calculated for a constant value of the
angle 62 = Q.

Figure I[.10 shows the functions Regr = Regr(m) for different values of the parame-
ter A and 62 = 0.

The curves Regr = Rezr(k) were constructed for different values of m on the basis of
these graphs (see Figure II.11). By using the family of curves Re:r = Rezr(l, m, 62=

0), it is easily possible to find the loss of stability point of a laminar boundary
layer developed on any body with separated flow over it, the surface of which is
compliant in the tangential plane (of course, it is congidered that the surface
characteristics are chosen optimal with respect to the parameter 62 which must be
close to zero).
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Figure I1.11. Critical Reynolds number as a function
of the parameters m and A; 92 = 0.

Considering the family of curves Regr = Re:r(l, m) (Figure II.1l), it is possible to

draw the conclusion that the compliance of the surface in the tangential plane over
which flow takes place has insignificant influence on the laminar boundary layer
stability. This infleunce, which is perceptible for small critical Reynolds numbers
(the range of negative values of the parameter A), decreases with an increase in A,
and for A > 4, it becomes in practice negligibly small. This is explained by the
fact that the influence of the surface compliance in the tangential plane on the
boundary layer stability is inversely proportional to the Reynolds number as follows
from the second boundary condition (I1.17).

§ II.7. Energy Exchange of Oscillatory Motions of a Fluid and a Wall

Let us consider the direction of energy flow on interaction of a stream with a
flexible wall. Knowing this direction makes it possible to determine the nature of
the operation of the covering. If the energy flow is from the fluid to the wali,
work is done by the pressure forces in the flow; consequently, the covering can be
classified as passive, oscillating under the effect of the pressure forces. If the
energy flow is directed from the wall to the fluid, work is done by certain external
forces applied to the covering and not connected with pressures in the flow over the
surface. Such a covering can be called "active."

Stability of the laminar form of flow in a boundary layer developed on an oscilla-
tory surface does not depend directly on the direction of the energy flow at the
investigated interface. For example, it cannot be said that if work is formed by
the pressure forces from the fluid, the disturbances causing these pressures will
damp, and vice versa, the direction of energy flow into the fluid does not neces-
sarily lead to an increase in pulsation energy and, consequently, to buildup of the
pulsations.

The indicated fact is connected with the presence of another source of energy trans-
fer to a disturbing motion, which is basic, This source is the Reynolds stresses

which define the process of energy transfer from the main flow to the disturbances.
If it turns out to be possible to control the magnitude of the Reynold stresses, it
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is possible to regulate the development of the disturbing motion. Therefore it can
turn out that in the presence of an energy flow from the wall to the fluid the
Reynolds stresses decrease, and the disturbances in the flow diminish. The opposite
plcture is also possible when the energy flow is directed to the wall, but the
energy of the disturbing motion increases as a result of the energy of the main flow,
for the magnitude of the Reynolds stresses increases.

The results of the calculations presented in § II.4 encompass all coverings, active
and passive, for all possible phase shifts between the pressure in the flow and the
wall displacements were considered there, Optimal phase shifts have been established
for which the stability of a laminar boundary layer increases to the highest degree.
Accordingly, it is of interest to determine what coverings (passive or active) have
these phase angles that are the best from the point of view of laminarization.

Energy flow per unit surface displaced with a velocity v under the effect of pres-
sure p_ is calculated by the ordinary formula v

= —Dy Uy (I1.44)

The minus sign in (II.44) is taken because under the effect of a positive pressure
in the flow the surface moves in the negative direction of the y-axis. 1f when cal-
culating by formula (II.44), N > 0, then the work is done bv the pressure forces and
the covering is "passive.” If N < 0. then the energy flow is directed to the fluid,
and the covexring operates as an "active' covering. The values of P, and vyw are com-

plex variables which vary harmonically with respect to the x-coordinate and time.
Therefore, considering an area with the coordinate x = Xg» we can write
P, = | p,lcos(axe—- wt),
Uy = | U, | COS(@xy — f - Og),

N. — i pw‘ Uyu'l

cos?(aig — wf)cos By — —,lz— sin 2 (axo — of)sin 90] .

Performing the averaging for the period T = 2rn/w, we obtain

N = — "IT”’“’l | Uy | €OS By (11.45)

Formula (II.45) does not depend on the choice of the point Xg5 therefore it is valid
for the entire surface.

The stabili y calculations performed in § I1.4 for the case of a surface that is
compliant in the normal direction corresponded to the following relation of the
surface deformation and pressure:

Yy, = kpc“’-.

Here
Yo = !/woe‘“ (x—ct)
Thus,
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p = _l:_ywem(x—m—m.. (I1.46)

In formula (II.46), k and y 5 are assumed to be real positive values. The surface
deformation rate in the normal direction can be determined from the expression

Oy

Uy = 3 == 0Ly el e h, (11.47)

Values of o, c are also real and greater than zero. Let us write (11.47) as
follows:

- ia (x—ct) +i £y
Uyw = QLY ot T, (I1.48)

From a comparison of (II.48) and (II.46) we see that the phase shift between the
pressure on the wall and the velocity is defined by the sum

3
Op =510, (I1.49)

Substituting (II.49) in (I1I1,45), we arrive at the following expression for the energy
flow at the interface of the fluid and elastic surface

M |
N = -—7,”,,,-'0”','5"101. (IT.SO)

On the basis of (II.50), we obtain the following conclusions:
a) if 180° > 61 > 0°, then N < 0 and the covering must be considered "active':
b) if 360° > 6, > 180°, then N > 0, and the coverine must be considered "passive";

c) if 6, = 0°, 8, = 180°, the energy flow is absent, and the covering can in this
sense be considered "neutral."

Considering the results of calculating the critical Reynolds number of a laminar
boundary layer on an elastic surface (§ II.4), we arrive at the conclusion that the
greatest effect can be achieved by controlling the boundary layer using an active
covering (care "a"). For the majority of shift angles characteristic of a "passive"

covering, the critical Reynolds number decreases. There isadefined range of shift
angles provided by a passive covering where the critical Reynolds number increases.

§ 11.8. Examples of Calculating the Lengths of Laminar Segments of Boundary Layers
on Bodies with Deforming Coverings

The loss of stability points in the case of a surface that deforms in the normal
direction were calculation for an ellipsoid of revolution with L/B = 8.

The following formula [20] which defines the variation of the form parameter with
respect to length of the body, was used to calculate the laminar boundary layer
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£

| al’ (x
Ho = UT)(Q)T)J UB-1(8) 72 (B) . (1r.51)

The values entering into formula (II.51) were defined as follows.
The parameters a and b have constant values [20]: a = 0.45. b = 5.35.

The flow velocity at the boundary of the boundary layer was defined as a function
of the x coordinate for an ellipsoid of revolution by a calculation [20] just as for
the function U'(x). The corresponding curves are i{l1lustrated in Figure II.12. The
distribution of the radii r(x) with respect to length of the investi':lgated bodies is
shown in Figure II.12. Since the Pohlhausen parameter A (x) = U'84/v calculated
using a sixth-degree polynomial for approximation of the velocity profile in the
boundary layer is assumed to be used for the stability calculation, beginning with
the functions £ = £(A,) [21] and A, = A ()\6) [22] (Figure I1.13), the function f =

f (>\6) was constructed (Figure 11.13), with the use of which the values of )\6(x.) were

determined for the indicated ellipsoid (Figure II.15).
Considering the function £ = f(x), beginning with determination of the form parame-

ter £ it ispossible to obtain the variation with respect to body length of the
value of

0% a— _ /10
S Vee = | g

Using the relation f = f(&8%/8**) [21] (Figure II,16), the graph of
b# R -—
- VRe, = F()

sas constructed for an el].ipsoid of revolution (Figure II.17).

On the basis of the curves Regr = Regr()\, k, 61 = 60°) (Figure II.4), using the
relation A = A(x), the curves for the critical Reynolds numbers Re:r as a function

of the dimensionaless coordinate X/L (Figure II.18) were constructed. Further de-
termination of the loss of stability point consists in the following. The curves
Re* = Re*(x) for different values of the Reynolds number ReL = UL/V are constructed

on the graph (Figure II.18) where the curves for the variation of the critical
Reynolds numbers with respect to body len th were constructed. These curves are
obtained by multiplying (6='¢/L)»’ReL by v’ReL. The x-axes of the points of intersec-

tion of the family of curves Rezr(;:, k) with the curves Re* = Re*(x) for different

Re, give the positions of the loss of stability points. The coordinates of the
loss of stability point x as a function of the Reynolds number Re.L and the parame-

ter k are presented on the graph (Figure II.19).

Analogous calculations can be performed on the basis of the function Re.gr = Re*cr (m,
X, 6, = Q) (see Figure II.11) for a body in the case where its surface has a cover-
ing \z.hat is compliant in the tangential plane.
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On the basis of the performed calculations it is posaible to draw the conclusion
that it is theoretically possible to laminarize the greater part of bodies over
which streamlined flow takes place well (bodies without positive pressure gradients
in the forward section) when using the appropriately selected coverings capable of
deforming in the direction normal to the surface. For Re, = 102 and k = 1, the
length of the laminar segment can reach 50% of the body length.
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L/2rmax = 8. gold of revolution with aspect ratio
L/2rmax = g, 01 = 60°.

As the calculations performed by the Prandtl-Schlichting [21] formula demonstrate
(Figure 11.20), maintenance of the laminar form of flow in the boundary layer over
%0% of the body length (calculations were performed on a plate) leads to a reduc-
tion in frictional drag by approximately 45% in the range of variation of the
Reynolds numbers of 10° < Re/ < 5.109,
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Key: a. turbulenc

- § II.9. Some Structural Diagrams of Flexible Coverings Designed to Extinguish Pulsa-
tions in a Boundary Layer

Kramer obtained his first results with respect to reducing the drag of bodies mov-

ing in water using the so-called "columnar covering," the structural design of which

appears in Figure II.21l. Silicone fluid with different kinematic viscosity was used

as the filler. Figure II.22 shows the results of testing a model described in § II.1
- with different versions of the colummar covering. Curve T corresponds to the fric-

tional drag of the model for a completely turbulent filow condition in the boundary

layer. Curve L corresponds to completely laminar fiow in the boundary layer.

Curve 1 was obtained for a covering made of rubber with rigidity of 15.8 kg/cm3 and

filled with a fluid having a viscosity of 400 centistokes. Curve 2 corresponds to

a covering with rigidity of 44.3 kg/cm filled with a viscosity of 1200 centistokes.

Curve 3 corresponds to a covering with rigidity 22.2 kg/cm3 filled with a fluid

with viscosity of 300 centistokes. Curve E gives a representation of the drag of

an absolutely rigid standard under similar test conditions.

A structural design that is easier to put together for damping coverings teated by
Kramer appears in Figure II.23. The test results are presented in Figure II.22 in
the form of curve 4. As Kramer notes [3], this design allowed for maintaining
damping properties of the covering over a prolonged period of time at the same time
as the properties of ‘‘columnar coverings" changed in a negative direction during
prolonged storage for unknown reasons.

Kramer proposed several structural designs of damping coverings (Figure II1.24, IL.25).
The complexity of manufacturing them differs. However, common features include the
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following: a) the presence of a flexible outer diaphragm which is supported on
flexible pearing elements and b) the presence of cavities under this diaphragm
filled with fluid with relatively high viscosity.

L INNNNIIAINN

Figure 11.21. Structural design of a columnar covering (dimensions
in mm). I -- -~Projections; II -- fluid filler; III — upper
diaphragm; IV -- lower diaphragm; V -- solid base.
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Figure 11.22. Results of the Kramer experiments.
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Figure 1I.23. Structural design of a ribbed Kramer covering (dimensions
in mm). I -- flexibleribs; II - flexible diaphragm; III — rigid struc-
ture; IV —— fluid filler.

y 7

Figure II.24. Structural version of a damping covering (dimensions in
mm). I —flexible diaphragm; II ~- liquid filler; III — longitudinal
cavities or projections.
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| . i o
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04 3

0,84 1,0
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Figure 1I.25. Structural version of a damping covering (dimensions in
mm). I —flexible diaparagm; IT —— cavity for fluid filler.

Key: a. 0.3 to 1.0
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Figure 11,26, Structural version of a damping covering (dimensions in
mm). I —flexible diaphragm; II ~-— porous layer; III —~flexible base;
IV -- rigid base.
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Apparently the simplest structural design {s a three-layer covering (Figure II.26)
consisting of a base, porous filler (sponge rubber, foam polyurethane) impregnated
with a fluid with the corresponding viscosity and upper flexible diaphragm.

By varying the filler porosity, the fluid viscosity and pressure under which the
fluid operates in the coating, it is possible to vary the damping characteristics
of the investigated design.

10.

11.

12,

13.
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CHAPTER III. INFLUENCE OF VARIATION OF THE PHYSICAL CONSTANTS OF A FLUID ¢ {
STABILITY OF AN INCOMPRESSiBLE LAMINAR BOUNDARY LAYER

§ IIT.1. Statement of the Problem., Equations of Motion of an Inhomogeneous Viscous
Fluid

The equations of motion and the continuity equation of an inhomogeneous incompres-
sible fluid are written in the form of expressions (I.1)-(I.3).

In equations (I.1)-(I.3) the fluid density p and viscosity U will be considered the
variables which depend on the space coordinates. Considering the study of fluid
- flows in a boundary layer where variation of all of the variables with respect to

the v-coordinate is appreciably greater than with respect to the x-coordinate, let
us saet

p=py) B= 1) (II1.1)

where v = §/p = v(y). In order to discover the basic physical laws connected with
variability of the fluid properties in the boundary layer, it is expedient to con-
sider the relations p(y) and v(y) given. The methods of creating inhomogeneity in
the fluid boundary layer leading to specific definition of the indicated functions
are not considered in this section.

This approach greatly simplifies the problem, for it eliminates the necessity for
joint solution of the equations of hydrodynamics and equations characterizing the
material or heat transfer in the boundary layer. Possible inexactness connected
with noncorrespondence of the assumed functions v(y), p(y) to the real functions
obtained in each specific problem do not turn out to be significant, for the pur-
pose of this chapter is to discover qualitative laws and indicate the possible
order of magnitudes.

In the adopted statement, the fluid density is a function of the coordinates of a
point in space. Therefore let us introduce the gravitational force acting on a
unit volume of the fluid into the investigation

oF = pg. (1I1.2)

The gravitational acceleration vector E has the projections By gy
ing (III.1), (III.2), the equations of motion are written as follows:

)y 8ye Congider-
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Ju dp J du | 9
Por " ax FPg. - plu- 0'; (0y 0.: );

dv Jop op  du (I11.3)
P = oy Vo8t pdvt 2505

dw dp ! dp [ dv dw
i P !’&’=+Wm’+'a'y—(7{+ )

The system of equations (IIL.3) together with the continuity equation (I.2) will be
the basis for studying the characteristics of a laminar boundary layer in an inhomo-
geneous fluid.

Restriction of the problem to only laminar flow in a layer is connected with the
fact that creation of inhomogeneity of the fluid in the wall region is used for
laminarization of the flow in the boundary layer. The control of a turbulent boun-
dary layer is the subject of the following sections of this paper.

In order to discover the conditions of maintaining the laminar form of flow in an
inhomogeneous boundary layer, it is necessary to solve two problems successively.
The first is determination of the characteristics of the laminar boundary layer in
an inhomogeneous fluid for given laws of variation of p(¥), V(). The second is to
study the stability of a laminar boundary layer with velocity profile in an inhomo-
geneous fluid obtained as a result of solving the first problem. For qualitative
discovery of the basic laws of the influence of inhomogeneity of the fluid on the
stability of a laminar fluid flow in a boundary layer and also simplify the problem,
the case of variable density p = p(y), vV = const and the case of variable kinematic
viscosity v = v(y), p = const will be investigated separately below.

§ III.2. Laminar Boundary Layer in an Incompressible Liquid with Variable Kinematic
Viscosity

Flows of the boundary layer type in an incompressible fluid with variable kinematic
viscosity have been investigated both by Soviet authors [1]-[7] and foreign authors
[8]-[14]. References [1]-[3], [8]-[10] study a laminar boundary layer in the
presence of a kinematic viscosity gradient in the wall region. In references [4]-
{71, [11]-[14] studies are made of flows in tubes and channels. The methods of
solving the system of equations for a boundary layer in the indicated papers are
divided into two groups. The first group includes approximate methods [1}, [2],
[8], [10]; the second can include the methods of numerical integration [7], [3],
[9]. The authors of all the enumerated papers relate the kinematic viscosity dis—
tribution in the boundary layer to the fluid temperature variation across the flow
which greatly complicates the problem. The studies [2], [8] were performed by the
Pohlhausen method using a third-degree polynomial. The problem was stated as in
references [15], [16].

In this section the Pohlhausen method is used, but approximation of the velocities
in the boundary layer is made using the fourth-degree polynomial. In addition,
calculated formulas were obtained for a flow with gradient velocity on the outer
boundary of the boundary layer which, with respect to structure, correspond to the
known Loytsyanskiy-Val'ts formulas, being a generalization of them to the case of
variable kinematic viscosity.

The system of Prandtl equations obtained on the basis of (III.3) in the investigated
case has the form
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dp ®u adv  du
otV ;

i

O o oy ey

du dv _n 111.4
=0 (II1.4)

du du
Il_()T+v5y— == —

dp
o = O J

The influence of gravity is unot taken into account, for the corresponding term can
be combined with a term characterizing the pressure gradient along the surface
over which the flow takes place. For specific definition of the function Vv = v(y)
we assuame that the viscosity distribution corresponds to the following law:

v
Vi — V. —B—)
v:vo(l-{-——————"’ o 8,

v (I1I.5)
where Yo is the viscosity of the oncoming flow;
Yy is the viscosity on the wall over which flow takes place,
The function Vv, _ ; y
W= =1 (F)
is represented for different values of the parameter B in Figure III.l.
For solution of the problem let us use the Pohlhausen method [17], that is, we

assume that the velocity distribution in the boundary layer can be represented in
_ the form of the polynomial

a4 e . 2 3
T = a0 e () + a0 () 1 aw($) (111.6)
the coefficients of which are determined from the boundary conditions for y = Q:

u=:0; v=1v(x);

o . N o s (I11.7)
o du _______I_ ou v u .
T P A T (111.8)
for y = 6: . »
u-;U: —u—=-i= .
9y o . (111.8)

Condition (III.8) corresponds to the assumption of validity of the first equation of
system (III.4) in direct proximity to the wall. The second of the conditions in
(III.7) will occur in the case where variability of the kinematic viscosity is
reached by introducing a fluid with kinematic viscosity differing from the kinematic
viscosity of the main flow through the wall,
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Substituting (III.6) in conditions (IIT,7)~(ILL.9), we arrive at the aystem of

equations
a+a,+a,+a,=1; )
a, - 2a, + 3ay; + 4a, = 0; l
a, + 303“{'—60‘:0;
) % O I 1 dp 2
(v' dy ly=o)_6_l'—_T'7“—x+ V5t l
which has the solution )
X K
a,(x)=2+.’6<_; a°(x)=_"2"; aa(x)=—2+7;
K .
al(x) = l - Tl
- where N 4
’ a v b i, b v
K — Vo ._V——-’ Vuo +2 R/ ay' L_o (III.].O)
- T ou, I 6 odv

S Sl

V -V
Vw Vo

Figure III,1. Viscosity distribution in a  boundary
layer for various values of B,
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I1f the law of variation of the kinematic viscosity corresponds to (III.5), then

°iU’ o g du 4 (,_L)
K= (Y] Vo Vo

l{-%-—o‘%l..' _B_(|___::_)

(I11.11)

Thus, a single-parametric family of velocity profiles in a boundary layer entirely
analogous to the case of a homogeneous fluid was obtained except the parameter K
(I1I1.10), (III.11) is in the given case more general, characterizing not only the
pressure gradient at the boundary of the boundary layer, but also the influence of
the ventilation or suction velocity of the material at the wall and also the in-
fluence of the kinematic viscosity distribution law. The parameter K for a homo-
geneous fluid in the absence of ventilation (suction) of a material through the
wall becomes the Pohlhausen parameter A = 62U'/v... The velocity distribution in the
boundary layer is represented [18] by the polyn 1

7 = Fn+ KG),
o<n=4<1
where
Fop =1 —(1—f (L4 Gn) = - n(l =P,

The displacement thickness and the pulse loss thickneas are expressed by the follow-
ing functions of the parameter K:

3 0 190 "6 315 945 9072 (1I1.12)

The Karman integral relation obtained by integration of the first equation of (I11.4)
across the boundary layer under conditions (111.7), (III1.9) is written as follows:

bvlJ ‘ -
ddx 1 %(26#‘ 4- 6‘) _:..:ll = —“:—U'L!-’ (111.13)
where )
Tw v, K
e =8 (24%) (I11.14)

From formula (I1I.11) it is possible to express 52 in terms of the parameter K

5==lu'",—(nx+'o); o (1I1.15)
where ] | be, B v,
deteh B (1 )
b2 8(1=52)]
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In further arguments we shall conaider the parameter le/vw a constant. Then A and

D also will be constant, depending on the ventilation characteristics and the vis-
cosity distribution in the boundary layer. Substituting (I1I1.12), (I11.14) and
(II1.15) in (I1I.13) we arrive at a first-order ordinary nonlinear differential
equation with respect to K :

dK - .o
& = T h(0+ - hK. (I11.16)

where

1K) = - (AK_"D):((%—{)%(?;—-Q—(I;;Q_) | |

o K L wmd 337 79K _ K
2 b o (AR FD’(sTo—m—rsa—a)
37 K K?

"(a—ns—m‘so—n)“""‘“*“")(m—gs*'z%) .

[2(K) = 2

For scolution of equation (IIL.16), according to reference 19], let us linearize
the functions fl(I) and fZ(K)’ considering that usually lK <17, )

37
315 (4K +D) 1A 1o

f1(K) ~ 37, D = 1ia—2 K +imia=p = Pu K+ Pz
3157 7 945
24 LUK +D)
) - B
,g(l\)22 37 2D -
315 %45
, 107, gy b 397
5 60 Vo 630
= 1890 rr—op K + 1890 —ig=op — = PuK -+ P

The values of the coefficients p ik (1, k = 1, 2) are clear from the above-presented
formulas.

Let us write equation (III.16) in the assumed notation

dN B [ v’ u- [V
P (Pu-W i p""LT)K + Pn'U—:'i'P-.'-z—U‘- (111.17)

During the process of deriving (III.17) it was assumed that IKI <7, and Py (1, k =
1, 2) have finite values.

Under these conditions it is possible to use the discussed approximate method of
calculation, the accuracy of which is higher for small K,

The general solution of a linear nonuniform equation (II11,17) is written aa follows
[20]:
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K l J’(p”%; i p“%i')exp[—-j(Pn%’Fpn%'—) dx}dx l*C] X

- cxp‘[ J (p,, %—- »{-pﬂ%)dx] .

Considering the expressions

exp [ ] (pn %;+ pu%)dx] = Uy Uy,

exp [" j (pu %‘:‘ + P %") d.v:] = (U')y=Pn (U)>n,
we obtain

K - (U')P” (U)Pn [%:_:_ UO—P“(U';) 'I’n_%:%u-ﬂn (L/')"Fu +

X
A p,,— pl:Pal) —(y.)l-p“
1 ('" P J g dxhef,

Ne

where UO = U(xc), U(‘) = U‘(xo). Let us define the constant ¢ from the condition

K(XO) = KO Ko'

€= (U‘;)Dnugn :

As a result, we arrive at the following solution of eauation (111.17)):

Ko = (Kb ) () ()= i+
1 (g == BN P U j wye (111.18)

Ul"’Pn

Xe

Knowing the function K = K(x), let us determine § = §(x) from expression (III.15);
then using formulas (III.12) and (IIL,14), let us find 8*(x), 6%*(x), ‘tw(x). Using

(111.6), it is possible to construct the velocity distribution in any cross section
of the boundary layer.

If both sides of equality (IIL.18) are multiplied by the ratio
b \2 37 \*
(T) “(5!‘5) !

we find the variation of the form parameter f, = K.G**ZIGZ along the surface of the
body over which flow takes place. Then if we proceed to a homogeneous fluid,
expression (II.18) is converted to the formula obtained by Loytsyanskiy [21] with
constants a = 0.47, b = 6.25.

Using the Val'ts results, Schlichting [18] recommends that we set a = 0.47, b = 6.0.
The values of the constants a and b obtained by Basin, Mel'nikov and certain other
authors are presented in the monograph [21],

In the case of flow over a plate when U' = Q, vlﬁlvw = const, K = const, equation
(III.13) 1is converted to the form

133
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000400080056-8

FOR OFFICIAL USE ONLY

v,0

TR RS Kt O\ db* K
( ) (2 e ST (111.19)

o T v A5 Gis T 0072 ) Tav

Defining the integration constant from the condition 6(0) = O, on the basis of
(111.19) we find

, K 7 . UI‘\—
. iy s

T /
ANy ; - Vie
§ l/ T ‘/ 37 K <IN

Knowing the function § = 6(x), it is possible to use (IIL.12) and (I11.14) to con-
struct the functions &*(x), 8**(x), Tw(x).

When investigating a boundary layer in a fluid with variable kinematic viscosity on

the plate, the system of equations (III.4) can be reduced to the following equation
by introducing the current functicn

dy  Oxdy  ox dyf _ oy \ o (1I1.20)
Introduction of the Blasius variables
_l_
(= e T = u()
converts (III.20) to an ordinary differential equation
C4 () =0 (111.21)

which must be integrated under the boundary conditioms:
EO)=(0)=0, {'lkse 1.

The equation (III,21) was integrated by Z. V. Borisova on the “Ural" computer with
the following kinematic viscosity variation law:

_’\i_ . Ve~ Vg “BIE_
Vo V+ Vu ¢ (111.22)

The integration results are presented in Table III.l. For putting formulas (IIL.5)
and (III.22) in correspondence to each other, it is necessary to consider the differ-
ence in scales of the variables n = y/8 and £. For an identical viscosity distribu-
tion law, the following expression must be observed

BB | L. (I11.23)

oV

The transition from the n coordinate to the § coordinate is made using the equality

AT
N o ; AV
| S v -
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Figures III,.2-II1,5 show the boundary layer thickness, the ratios §*/§, &*/&** and
the friction coefficient of a plate reduced to a wetted surface as a function of
the parameter \)w/\)o. The exponent in the graphs of the indicated figures is taken
as B, = 1.

1

7
IVo
6,5 —

Figure III.2. Boundary layer thickness of a plate
as a function of the ratio v /v,; B; = 1.

[=cY
-

3 //

wl /

6,3}~

02 Yw
0 F) 10 v

Figure III.3. Displacement thickness as a function
of the ratio \)w/\)o; Bl =1,
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(5]
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e

e

‘ vy
Zo ] 10V,

Figure II1.4. The parameter H = #*/ ** ag a function
of the ratfo \)w/\) ; By = 0.

Vl/[.
' 8,25

/ I__—_____‘ ——
15

"0f

by Z 4. 3 [ ve ¥

Jw
\X

Figure III.5. Friction coefficient of a plate as
a function of the ratio vwlvo.
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§ III.3. Laminar Boundary Layer in a Fluid with Variable Density

Let us consider the two-dimensional, steady-state boundary layer under the assump-

tion that By = a, gy = -g, where g is a gravitational acceleration. The

system of equations of the boundary layer obtained on the basis of (III.3) is written
as follows:

du du VYo | Pu 1 9p Ou,

“Ti;+v—@'__-—p—0?'v0y’+vp dy dy’|
» B (111.24)

ay

=—p§-
Let us consider the pressure Py related to p by the expression

, 4
pr=p-+g]py)dy.
Yo

Then system (III.24) together with the continuity equation assumes the form

Ju du 1 ap Fu v dp du
W = = — —_— — e e e
Jdx f Jdy p o Ox v oy? + p Jdy oy’
o o e o (111.25)
dy 7 o T ey T

It must be emphasized that the continuity equation (I.2) for an incompressible fluid
has the above-indicated form in spite of the dependence of the density on the space
point coordinates (see [28], Chapter I).

Defining the pressure gradient along the flow from the condition of validity of the
first equation of (II1.25) at the upper boundary of the boundary layer, we arrive at
the expression

ol , O v dp du

o by dy? ] “@—' (I11.26)

o Ju P
11 (—“— }—00!7 v—"p"‘U

where p, = p(6).

For solution of the problem, just as in § III.2, we uge the Pohlhausen method., The
velocity profile in the boundary layer will be approximated by the polynomial (III.6),
the coefficients of which will be determined from the conditions (III.7), (IIIL.9)

and (III.27), -

o ey v 0*u 4 CLoap Ju

Ul ‘L.)!/- y=0 P 'l—);_ —| VT)_T/T! y=4 P ‘).’/ '_); y--0 ’ (III 27)
These coefficients are expressed by the formulas:

K, Ky

u, 2y Uy au=—2+-’;—'; a,:l-—h'

_6')

in which the value of
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o’ p‘_z_b_g,__i_z b o

K, = — Pw Pw 0y Jy=0 (1II.28)
' 1+ [ 8o, 1 8 op
6 v S Pw OV ly=0

has the meaning of a Pohlhausen parameter in the case of a boundary layer with
variable demsity. The velocity distribution across the boundary layer as a func-
tion of the parameter Kl is entirely analogous to the case investigated in § IIT1.2
except the role of the “family parameter there was played by the value of K.

Let us give the law of density variation with respect to thickness of the boundary
layer by the function :

~sd
PY) =ppe 8, _ (111.29)

then formula (III.28) is rewritten as follows:

b‘-‘vU"e—U;tz (.b% -+ B)

ARERE D)

(I11.30)

It is meaningful to use formulas (III.28), (III.30) just as, in general, the
Pohlhausen method, under the condition where -6 <K, < 7. Let us add and subtract
the value of UdU/dx in the right-hand side of (III.}6), and then let us integrate
both sides of the equality with respect to the y-coordinate within the limits of the
boundary layer. Considering the continuity equation, we obtain the following inte-
gral expression for an incompressible laminar boundary layer with variable demsity:

[
BV (2 ) = b (-1 )

[
S L N A 0"|
+ u:] p oy YT Ty =0 (I11.31)
O

where &%, &*% are expressed in terms of the parameter K, using formulas entirely

analogous to (III.12). Using (III.2¢), we determine the last two terms of the left-
hand side of (III.31):

VP duy v f( By By
u-oj'p—s;w“'—u'o]( F) w5

Let us substitute the obtained expressions in (III.31)

%+ U | p—l
i b |28 4 67 6'__%f__,__.
0 v O B
7 7] ( U oy W,T)~ (I11.32)
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Using the expression for the velocity profile and formula (111.30), we find

Uoauw| A Ki\. (111.33)
Lk G
) I11.34
8% - %c“(MK, ‘+N), ( )
where Lo oo
v v
M1t (54 B), N=2(—v—'+B).
Let us consider the value of dvll\) to be constant.
Considering (III.33) and (III1.34), we reduce (III.32) to the form
IK, u” U :
‘T!: = 'UTfI (K,) + 'U-fa(Kl)» (I1I1.35)
where ke 37 K, K
, ‘M"'*”)'(W“m—s“w)
fl (KI) : - 2' . —

oKk K 2 K\
M(ﬁs‘—m“mwz)“’”’“"‘”’(@ﬁ* 7%5)

o i . W7 79K, K'i')

LK 2(—7—1 2 n)e -—-(MI\,»{N)(.W)--——_,SGO —
2 1) - 7 m .

8T KK (2 K
M (ﬁ“?ﬁ"fmz)"""’“ ’ N)(ms ' ‘2‘3(‘)R)

Linearizing the functions fl(Kl), f2(Kl), just as in § III.2, we obtain
3
5 —‘% (MK, § V)
i (R) = =g o
35 T 0
IR
Timar ey = e Kb
) K - K
(i'v—~ EEILUN B)c “--(.”f’%(,\«u\'. i N
37 N =
315 945

M
HHAL =2V

Ky

[ (K=~ 2

M

!
TN K, + 1890 x

(l‘.‘:’ |2 5)3-0_3_3_7_
v 630
TTiIM — 2N = gk, + gu

The simplifications made allow the solution to equation (IIL.35) to be found (see
§ TI1.2):
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K- (Kt 32) () (a":)'" Gt

’ Uy —an .
n (q22 ‘Iu‘ln )(U )a..(U)a.. '('t—/‘lﬁ-_-_d""

h : , .
vhere Kio=K(x); Us=U(x); Us=U (x).

Knowing the function K1 =K (x), from expression (III, 34) let us determine § = §6(x),
after which we find 8*(x), 6**(x), and using (IIL.33), T, (\') = pwv o

7 |y
In the case of flow over an impermeable plate, where
U'=0, v, =0 K, = —-—g == const,
equation (II1.32) is simplified significantly
U A LI L )
2 v 35 995 %072 ) dx (11.36)

Integrating (III.36) under the condition 8(0) = 0, we arrive at the expression for
the boundary layer thickness

/—‘,-\'— A 4’*'— }'qB )
b= |7 ' s K K

35 W5 9072
Using the formulas obtained for an impermeable plate, the boundary layer character-
istics were calculated for various values of the ratio p / p,. Here the value B was
determined from expression (IIIL.29): B = ln(pw/ P,) - Th¥ calculation results are
presented in Figure III.6. The local friction coefficient was calculated by the

formula
o KK
, K 315 ~ 045 “9072
L == Tw o _ Pu g M
p. U? Pc( 6) 4 I\n + 28

If flow over an impermeable plate is considered, then in the case of density variable

along the y-coordinate, the system of equations (III.25) can be reduced to the
generalized Blasius equation

¢ (I11.37)

which, just as equation (III.21), must be integrated under the conditions

EO) —T(0) = 0; tfgru—1. (111.38)
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Selecting the law of variation of density acroas the boundary layer in the form

p () = pue 8%, (11I1.39)

where £ is an independent Blasius variable, we obtain the following form of
equation (III.37):

- [ ™ , ’
P45 —s=o. (111.40)

For comparison of the values of B and B, in expressions (II1.29) and (III.39) it is
necessary to use equality (III.23) considering the difference in scales

1
U\?
n =4 and g.:y(;;)
Making the substitution
c = ;. '*' 2Blv
we convert equation (III.40) to the expression
" 1 .

For equation (III.41), on the basis of (III.38), we obtain the following boundary
conditions: | B

The longitudinal and transverse velocity components in the boundary layer are defined
[18] by the formulas:

w= S ur @ v =y V2@ 0.

ox

On the wall under the condition u = 0, the transverse velocity component is equal to

00—+ Z.1 (0.

When the fluid is fed across the wall to the boundary layer 5(0) < 0,; when taking
fluid from the boundary layer 5(0) > 0.

Thus, the problem of the velocity distribution in a boundary layer with density vary-
ing according to law (III.39), is equivalent to problem (III.41), (III.42) of a
boundary layer with ventilation or removal of fluid acroas the wall over which flow
takes place. Here the transverse velocity component on the wall must vary according
to the law

v(0) = B, l/—”? (I11.43)
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Figure III.6. Boundary Layer Characteristics as a
Function of the Ratio fw/e*

From formula (III.43) it is obvious that increasing the fluid density in the
direction of the wall (B, > 0) makes the velocity profile in the boundary layer

less full, and a decreasé in demsity in the same direction (B,< 0) leads to £ill-
ing out of the profile. Quantitative data can be found in re%erence [22]}, where
problem (III.41), (IIL.42) was solved numerically both for positive and for negative
values of 7,(0).

§ III.4. Laminar Boundary Layer Stability in an Incompressible Fluid with Variable
Kinematic Viscosity

The stability of plane-parallel flows of an incompressible fluid with variable kine-
matic viscosity in the presence of rigid-walls has been discussed in references [23]-
[27]. 1In reference [23] a study was made of Couette flow stability. The solution
method, which compares with the method of solving the problem indicated in the

title of [24], differs from the Tollmien-Schlichting method, for the expansion of

the solutions with respect to powers of aRe used presupposes smallness of this value..
The study [25] contains a general statement of the problem of stability of inhomo-
geneous fluids. In the paper b+ Di Prima and Dunn [26], the Galerkin method was

used to investigate the stab!®ity of a boundary layer with respect to vortex dis-
turbances in the case of variable kinematic viscosity. Since the development of
this type of disturbance depends weakly on the form of the velocity profile in the
boundary layer, noticeable variation of the viscosity had an insignificant influence
on the critical Reynolds number. The same problem is the subject of reference [27].
In the published literature we were unable to find references to studies of the
stability of a laminar boundary layer in an incompressible fluid with variable
kinematic viscosity with respect to disturbances of the Tollmien-Schlichting type
with the exception of the mention of an unpublished paper by Macintosh, who dis-
covered significant dependence of the critical Reynolds number on the viscosity
gradient.
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In this section a study is made of the influence of the variability of the kinematic
viscosity on boundary layer stability with respect to Tollmien-Schlichting waves.

Two approaches to studying the development of disturbances in an inhomogeneous fluid
are possible. On the one hand, it is possible to assume that the displacement of
the fluid particles causes no change in the distribution p(y),v (y), that is, the
velocity pulsations are not accompanied by pulsations of p and V. This will occur
if a fluid particle characterized by values of p,, V incident in the layer with
defined values of V., p, instantaneously changes its properties so that V becomes

equal to vy and, re%pec%ively,p acquires a value of Pqe

On the other hand, it is possible to consider that a fluid particle moving from layer
1 to layer 2 completely retains the properties which it had in layer 1. Here the
velocity pulsations essentially cause pulsations of the values of v and p.

In reality, obviously the phenomenon develops by some intermediate scheme, for on °
displacement in an inhomogeneous fluid the particle changes its properties. The
degree of approximation of the process to the first or second scheme depends on
the rate of these variations.

Studies of disturbances in a fluid that is inhomogeneous with respect to kinematic
viscosity, discussed below, have the first scheme as their basis.

Using (II1.3), let us write the system of equations of disturbing motion of a fluid
with constant density for the two-dimensional case,not considering the influence of
mass forces,

vy dug u 1 o v (due , duy\ .
- T +vi’7y__— P ox +VAU"+T_J( dy + % )'
doy duy 1 ap* vav duy
-7 S TR < L el s

i R el 5 ay-+vA% ,23; TR

Excluding pressure and introducing the disturbing motion current function, just as
in § 1.4, we arrive at the equation

o UV, 7]

(0 — o) (@" —a’p) — u'p = — (%Re [v. (9" — 22%¢" + ') +
+ 2507~ a’9’) + Ty‘ ¢ + a’tp)] , (111.44)

Yo R L2

where v, SO v v, is the viscosity of the main flow. All the values

entering into (IIL.44) are dimensionless.
Defining the solutions of equation (III,44) by the methods discussed in § 1.6, as
the first two solutions we take the corresponding solutions of the nonviscous equa-

tion (I.72) and (I.73). In order to find partial solutions of ¢,, ¢4, let us con-
sider equation (IIL.44) in the vicinity of the critical point y & Vi

Let us introduce a new independent variable
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P
n 4

and, proceeding analogously to the method discussed in § I.6, let us expand all the
coefficients of equation (III.44) which depend on y with reapect to powers of y = ""
ne. Por specific definition of the law of variation of the kinematic viscosity,

we set :

!_w"'_\’! e By
Vo '

ve=1+4
so that

v, =1+ v"—v_o!‘-’c_”“"‘+"') =1+ ue""”‘(l —Bye + )
'o M

The value of Bne is on the order of (aRe)-1/3, which follows from (I.85) under the
assumption of B ~ 0 (1). Therefore hereafter we shall consider in the vicinity of
the point y = Yie

Vw — Ve ,— By,
Vy = l -‘- ———_V“ ¢

Discussion of the expressions for the coefficients of the gecond and third terms of
the right-hand side of (III.44) does not appear expedient, for in the approximation
in which the problem is solved, they are not considered, for they have a higher order
of smallness.

As a result of the solution, ¢3, ¢4 will be determined on the basis of an equation
analogous to (I.87)

v . -
— %o =0
Xo Vo — Vo -C— Bll,‘

L e
The form of these solutions corresponds to formulas (I.90) and (I.91) except the
parameter B has a somewhat different value

1

. 3
b= -
Vg — Vg _— )
. (1 | e, “"")

The neutral stability and critical Reynolds number curves for a boundary layer with
variable kinematic viscosity are calculated by the scheme indicated in § I.7 for a
homogeneous fluid. The velocity profile is assumed to be given. For the value of
o found, which lies on a neutral curve, instead of formula (I.112), the Reynolds
number is determined from the expression

Re :- (l + ‘.“:_.)_n‘ -llu“)_l__(ﬂ):\.

auy, \ U

(I11.45)

Studying the influence of the viscosity gradient in a boundary layer on the form of
the velocity profile (Figure IIL.7-III.9) and considering formula (III.45), it is
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possible to draw the conclusion of the presence of two aspects in the problem of
how the variability of the kinematic viscosity near the wall influences the stabil-

ity of the laminar form of flow.

For example, let us assume that Vo < Vg Then with a decrease in vw the fullness

of the velocity diagram in the boundary layer increases significantly, which leads
to an increase in stability under other equal conditions. However, a decrease in
vw’ on the other hand, weakens the stabilizing effect of the viscosity on the veloc-

ity pulsations, which is obvious from formula (III.45), and the critical Reynolds
number for given, reinforced velocity profile decreases by comparison with a uniform

fluid having kinematic viscosity V.

The corresponding calculations were made in order to discover the total influence of
both factors.

0,9 ]
/
_\v_;,;,‘o’? //

05 . 0,6 10

Figure III.7. The function u/U = fl(y/G, vw/\)o).

Figure III.10 shows the neutral stability curves consatructed on the basis of the
profiles with characteristics presented in Figures III.7-III.9. These character-
istics were obtained by the data in Table III.1 for B, = 1. The stability calcula-
tions were performed under the assumption that the fluid is homogeneous. The criti-
cal Reynolds numbers are shown in Figure III.ll and III1,12 (curve 1) as a function
of the parameter vw/vo. Then the stability was calculated by the scheme in this

section for the same profiles using formula (I11,45). The values of Bl and B were

compared using (III,23) and the graph in Figure 11I.2. The corresponding curves
are also plotted in Figures III, 11, III,12 (curve 2). In addition, Figure III.1ll
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shows the calculated pointa obtained for velocity profiles calculated by the
approximate method of § III,2, Investigation of the functions Rzgr - Regt(ijvo)

permits the conclusion to be drawn that decreasing the kinematic viscosity of an
incompressible fluid in the wall region by comparison with the kinematic viscogity
of the main flow leads to a noticeable increase in fullness of the profile and
growth of the critical Reynolds number. The destabilizing influence of decreasing
the dispersion somewhat weakens the effect of increasing the stability.

u'g v
)
. 5\\
4
3 \\ |
a \ T2
2 \-—1
1
0 a7 22

<
>
~

g4

=

6 T8 Y

Figure III.8. The function wbﬂ/-'fa(é?. —¥L).

¢ A\
It is possible to obtain an idea about the quantitative aspect of the problem by
studying the graph in Figure III.1ll.

§ III.5. Stability of a Laminar Boundary Layer with Variable Density Across the
Boundary Layer

References [28]-[36] investigated the atability of a laminar flow of an ideal fluid
with variable density. Since the fluid viscosity was not considered, the mechanism
of the occurrence of the instability differed significantly from that in a homogen-
eous viscous fluid, in particular, the transition to turbulent state in no way is
related to the variation of the Reynolds number. For boundary layers where the
viscosity has a significant influence on the flow formation, obviously this
approach is inapplicable. Interesting arguments with respect to studying the be-
havior of oscillations in an inhomogeneous fluid appear in the monograph by Prandtl
[37], but it was not possible to obtain quantitative determinations by this method.
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Figure I1.10. Neutral stability curvea of the boundary
layer in a fluid with variable viacosity.

It is also necessary to mention the brief discusaion of wave theory in a fluid that
is inhomogeneous with respect to density contained in the book by Lamb [38].

The only study which takes up the problem of stability of a laminar boundary layer
in an incompressible, viscous and inhomogeneous fluid with respect to density is

the paper by Schlichting [39]. However, tne method that he used can raise some
objections [28], for in the process of deriving the basic equation with respect to
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Figure II1.11. Critical Reynolds numb~r as a
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Figure I1I.12, Critical Réynolds number as a
function of the parameter vw/vn(w;%go),
(]
. the amplitude of the current function of the disturbing motion, Schlichting used the
second scheme mentioned in § ITI.4 to determine the relation of the density pulsa-

tions to the velocity pulsations, which led to the appearance of a singularity in
the total Orr-Sommerfeld equation.

Surveys of the principal papers on stability of fluid flows with variable density

appear in the generalizing articles [4Q], [41]. A bibliography (primarily of Eng-

lish and American authors) on flow of inhomogeneous fluids can be found in the
survey [42],
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In the following study, the problem of the stability of a laminar boundary layer in
- a fluid with variable viscosity is solved under the assumption that the velocity
pulsations do not cause density pulsationms.

The system of equations of disturbing motion of an incompressible fluid that is
inhomogeneous with respect to density based on relations (I11.3) is written in the
two-dimensional case as follows:

v, dux ANE Jp* i
p (G ruge _"u‘o;) = — 5 trdut
+ 2&(2& + it) (I11.46)
dy \ 9y ax J°
. dv
Jdu, duy ap* D Ut AN
P(fﬁti"—“'dr):—w—%}“\v”{ 20y 3
dv duy
__ax‘ 4- 5 = 0.

- In formulas (III.46) u(y) is the velocity distribution of the main flow; p = o(y);
- U = udy), v = const.

Substituting the following values in equations (II.46)

Uy = Bx v) L" (av=bh H
= 1 (ax—bt

v, = v, (y)e" P,
- 1 (ax—b

p* = p* et 0,

excluding the pressure and introducing the current function of the disturbing motion
using the continuity equation, we arrive at the following differential expression:

(1) =yt [ (a—E )y —e] =

a

- _‘L‘

=@ =20 - ale + 28 (9" —atg) +

. I11.47
+ 5 "+ atg)). (4D

Let us reduce equation (II1.47) to dimensionlesa form by the usual method (see § 14),
continuing to use the previous notation for the dimensionless variables u, ¢

(1~ )9~ o) — g |- £ f(u— o) o' — 'y} =
- "ﬁ'& @IV — 2a%" |- ale —1-2%’)—6 R
6.‘

V(" — ate’) + —,,'— (9" - a’tp)] .

(11.48)

The solutions to equation (III.48) will be found by the method discussed in § I.6.
Let us take the solutions of the equation
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( — l,') (q)n _ a‘.!(p) — u'(p + H ‘(“ — C) ‘P' - “"P‘ =4, (111'49)

as the first two solutions, where H = p'§/p will be a constant if the density dis-
tribution is defined by formula (III.29) H = -B,

Expanding the solution of equation (III.49) in the form of a series

QW) = (u—)lg)+ag W)+ -+ +a¥g, )+ -],

for the functions gi(y) (see § 1.6) we obtain the following asystem:

gl - (255 + ) go(9) = O;

[ R

u’

G+ (275 + H) e W) = gaar )
h=12..) '

Integrating the indicated equationa successively, we find:

'}
Bom®) =1 goay) =6[(u—c)-2e—~v dy; : )
I11.50

’ - ! q -
Entr(y) = 5\ (4 — )~ ey b (u —cyelvg, () dyJ dy.
Thus, |

P =—0c) Y galp)a®; gu=1;
n=0
P ) = =0 X ga(y)a™;
n=
1
8n(y) = 5(“ — ¢)~2e—Hvdy,
the functions gn(y) are defined by relations (III.S50).

For construction of the remaining two solutions of equation (III.48) let us use the
expansione of these solutions in the vicinity of the point y = Vi introducing the
new variable (see § I.6)

where € is a small parameter,
Denoting ¢(y) = X(n), let us tranaform (ILI.48) B
(1 — ) (X" — a’ey) — ety + H (1 —c)ex’ — u'e’x) —
{ [xl\' — %" -+ ety +

~ aRee?

20 (e — a3y ,“%i (e*y + a’e‘x)] . (I11.51)
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In equation (IIL,51)

, | - "
U= Co= e |t (e) + -+,
Wos= g e b ee e,

" v
o e 4 oag en-to-ee,

the values of H = 8p'/p, 620"/p for the selected law of density variation (ITI.29)
are constant. The parameter € is determined from the condition that the largest
terms with respect to € in the left and right—hand sides of equation (III.51) of
the same order, that is, the forces of an inertial nature are commensurate with the
forces of viscosity crigin

] 'le-

ey ~ .
UK ™ (Reet

Hence oo
(uRe)”:' ’

By arguments analogous to the case of a homogeneous fluid, we arrive at the conclu-
sion that the solutions ¢3(y), 4>4(y) are defined by formulas (1.90), (I.91). Thus,

the density variability in the adopted statement of the problem and for an ordinary
degree of approximation of the solution influences only the "inviscid part"of the
general solution of equation (III.48). Using the generally accepted boundary
conditions (see § I.5) and the approximate equality c = u(')yk, we arrive at the
characteristic equation

§@ -1z (111.52)
1
B where Aoy — e
2 e JL (u—o)y"*dy Tk
!
The integral J - ‘ " (u. ¢ydy will be calculated in the same approximation as in

[0
§ 1.7, considering the expansions

~

w (=0 (v =)

M Iy, W,
M B (g — ) b

uy \
(0t e =t tou);l
i (ITIL53)

[

o
N LU u,

1y, -
e | B .
R (*".‘5. - (e — a),

The complex equation (III.52) is equivalent to two real equations which considering
(III.53) are written as follows:

o i Y T cu et
S 1 ey W,:,.,A(_ﬁ_ »—';‘_:)lnH- T (I11.54)

n
\ llK u,.

lel
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M‘ LW

Xi(w) = — ucufﬂ”""( “f; - _Q;) (1I1.55)

On the basis of the system of equations (IIL.54), (III.55), it is possible to indi-
cate the following scheme for calculating the neutral stability curve coinciding
in its primary features with the calculation schewme for a homogeneous fluid (see
§ I.7). Being given a defined value of Vs by the graphs of j, (w). & () we deter-

mine ‘:3', (). & (@)).  Solving equation (III.55) graphically with kunown left~hand
side & (@), for the given velocity distribution and density distribution in the
boundary layer we determine the value of the parameter c, which means the values of
Yo ul'( corresponding to it. Using (III.54), we find

o, s

— ' ~ ul') 1 —!
«©= T—o° {‘(S,(Uh)"" 1+ e Yk 4 L’flw')ln C] . (I1I.56)

L3

Then we calculate the neutral Reynolds number

Re = L("" )”.

uu; Ya

It is possible to obtain the critical Reynolds number if all the calculations are
made for values of

u P
67 N 82_5'
. 0'6 .
L0
AN
L J
404 g\\\\
S VRO | WA \ SV o
ek
b2 A\ '\\
'M \\
) \
0l
: 2,0 5,0 40 ty Ke

Figure III,13, Neutral stability curves of the bound-
ary layer of a plate in a fluid with variable density.

In Figure III.13 we have the neutral stability curves fox the Blaaius profile for
different values of the parameter B, Attention is drawn to the fact of an increase
in the flow stability in the case of a negative density gradient (B > 0) in the wall
region. Obviously this fact can be explained using the scheme for the occurrence of
Reynolds stresses discussed in § I.3. With negative density gradient the magnitude
of the Reynolds stresses will be less as a result of variability of p(y), and for a
positive gradient (8 < 0), larger by comparison with a homogeneous fluid. A
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decrease in the value of the Reynolds stresses which transfer the energy of the main
flow to the disturbances, naturally leads to an increase in the stabflity. In the
case of an increase in density with respect to the y~coordinate, th: form of the
neutral curve resembles the corresponding curve for a velocity pro'ile with inflec~
tion point, that is, there is an "inviscid instability," and the region of insta-
bility does not disappear for v + 0. For the upper branch of the neutral curve when
R + ®, the parameter c is defined in this case by the condition ué/uﬁ -B=0(8 <0,

and the value of the corresponding wave number ¢ can be determini:d from (III.56) for

W, -

1.

10.

I, & -0
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CHAPTER IV. EFFECT OF SUCTION OF A FLUID THROUGH A PERMEABLE SUKFACE OF A BODY
O THE LAMTNAR BOUNDARY LAYER CHARACTERISTICS

§IV.1. Similar Solutions of the Laminar Boundary Layer Equations in the Presence
of Suction

Solutions of the laminar boundary layer equations which define the longitudinal
velocity component profiles having similarity properties, that is, for each cross
section of the boundary layer there is a characteristic linear dimension and
characteristic velocity such that the dimensionless profile obtained with their
help is identical for all cross sectiomsof the layer, are called similar.

The system of equations of a two-dimensional steady-state boundary layer in dimen-
sional form is described on the basis of (1.18) as follows:

du du ap Fu
wagg v g =—gntvys (Iv.1)
du du  dp
oty = Oy

It is possible to find the longitudinal pressure gradient by using the first
equation of system (IV.1), considering the identity 93p/dy=0. After defining the
boundary of the boundary layer y=8 from the conditions du du -

cop e “‘z-
oy 8 LABTTER Y Y
where €31, €, are negligibly small, we find
o) e Y gy
p Ok fys p Oov u ox v, (1v.2)

The function U=U(x) in the equality (IV.2) is the velocity distribution on the
outer boundary of the boundary layer. .

If we introduce the current function ¢(x, y) on the basis of the continuity equa-
tion, the first equation of system (IV.1l) is written as follows:

I SR K is SN T i,
Oy Oxoy  Ox o4 9y (1Iv.3)
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It is necessary to integrate equation (IV.3) in the case of a permeable surface
under the following boundary conditions (see §I.2):

uts, 0= 55| o= i)

v(x, 0)= — SE| o =Fa(on (1v.4)

J
u(x, y)llwn = _l)lz— y_’“'“’ U(X)
J

The procedure for describing the last of the boundary conditions (IV.4) is of a
somewhat formal nature, for equation (IV.3) itself correctly reflects the motion
of the fluid only in the wall region and, generally speaking, it is impossible to
consider its solution for y*=, However, the calculations for the special cases of
flow with boundary conditions (IV.4) give satisfactory correspondence to the
experimental results, which is the basis for the application of the methods of an

asymptotic boundary layer in practical applications of the methods in which the
condition for y+= is used.

Finding similar solutions, according to the definition let us introduce [1] func-
tions ¢(x) and ¢(n) such that
]
Y- 5w
§ = U=t

as a result we obtain u/U(x)=%'(n), that is, the dimensionless velocity profile in

the boundary layer does not depend on the longitudinal coordinate. In the new
variables equation (IV.3) assumes the form

. ’ ) U’ .
Yo (5 - Ly = e O (Iv.5)
vy LA Y

dl/ (n) d* . L .'[L[_

’ P e ——— ) = .

U - dx ° I dayt’ dx
In order for the function ¢ to depend only on the variable n, the following two
conditions must be observed:

UI_ = = st

_\_"—l—.: = COlsSt, (IV.6)
b U U g = const,
(w7 ) ~b=c (1Iv.7)

which are the equations for determining the functions U(x), ¢(x). On satisfaction
of the conditions (IV.6), (IV.7), equation (IV.5) is converted to the following
form

al” — a7 (1v.8)
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We obtain the boundary conditions for the function ¢(n) based on the relations of

(1v.4)
o= 9% v B do . (1Iv.9)
w(x, 0= | =3y ‘Plngn = U (x)® |n==u -fn(x)k‘
C )= —9% (Y _pE A =
vix 0= =Gl ™ [( 7 U'v’)w HU—g "J =0
(0 oot

o (ﬂ) Ill—n- -1

Relations (IV.9), (IV.10) show that for existence of similar solutions the longi-
tudinal and transverse velocity components on the wall in the boundary layer must
vary by the laws

w(x, 0):=fi(x) = A-U(x)

v(x, 0) = fy(x) = B (%— - _%-) = Bbvp(x). (1v.11)

Here equation (IV.8) must be integrated under the boundary conditions:
®(0) - B; W (0) = A @ (Wlaaee > L. (1v.12)
Let us consider some special cases.

a) U'=0. The boundary layer on a plate. Parameter a=0. Let us find the function
$(x), integrating equation (IV.7),

g by T [7]

s e Vo wwrar

where the integration constant c¢, is defined if the value of ¢(x) is known at any
point x;. Equation (IV.8) is converted to the form ¢"'+b90"=0, Making the sub-
stitution <!>=(1/b)<!>1, U=bU;, let us reduce the problem to integration of the
equation
{1 P () e {]
(1v.13)

under the boundary conditions

A0y - By - By A (0) - Ay = Al O () yow - 1

- Here the tangent and normal velocity components on the wall must vary by the laws

o

ux, 0):== AU, vix, 0) - By l/ YTENE

The results of the numerical integration of equation (IV.13) for suction and
blowing are contained in reference [2];
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b) U=A,(x+By). In this case, from (IV.6) we have ¢=(A2/va)1/2=const, which consid-
ering (IV.7) leads to the equality a=b. Thus, the problem reduces to integration
of the equation

W 4-b(1 - @?) 2 9

under the boundary conditiuns (IV.12), If the fluid velocity components on the
wall are nonzero, they must vary in acco